Macrophomina phaseolina: microbased biorefinery for gold nanoparticle production

  • Smitha Mony Sreedharan
  • Sonali Gupta
  • Anil Kumar Saxena
  • Rajni SinghEmail author
Original Article


Biofabrication of nanoparticles via the principles of green nanotechnology is a key issue addressed in nanobiotechnology research. There is a growing need for development of a synthesis method for producing biocompatible stable nanoparticles in order to avoid adverse effects in medical applications. We report the use of simple and rapid biosynthesis method for the preparation of gold nanoparticles using Macrophomina phaseolina (Tassi) Goid, a soil-borne pathogen. The effect of pH and temperature on the synthesis of gold nanoparticles by M. phaseolina was also assessed. Different techniques like UV-Visible Spectroscopy, Transmission Electron Microscopy (TEM), Dynamic light scattering (DLS) measurements, Fourier transform infrared (FTIR), and EDX were used to characterize the gold nanoparticles. The movement of these gold nanoparticles inside Escherichia coli (ATCC11103) along with effect on growth and viability was evaluated. The biogenic gold nanoparticle was synthesized at 37 °C temperature and neutral pH. UV-Visible Spectroscopy, TEM, EDX, and DLS measurements confirm the formation of 14 to 16 nm biogenic gold nanoparticles. FTIR substantiates the presence of protein capping on Macrophomina phaseolina-mediated gold nanoparticles. The non-toxicity of gold nanoparticles was confirmed by the growth and viability assay while the TEM images validated the entry of gold nanoparticles without disrupting the structural integrity of E. coli. Biogenic method for the synthesis of nanoparticles using fungi is novel, efficient, without toxic chemicals. These biogenic gold nanoparticles themselves are nontoxic to the microbial cells and offer a better substitute for drug delivery system.


Nanotechnology Gold nanoparticles Bio-reduction Macrophomina phaseolina Transmission electron microscopy FTIR 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals (if applicable)

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study informed consent is not required.


  1. Agnihotri M, Joshi S, Ravikumar A, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63:1231–1234CrossRefGoogle Scholar
  2. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318. CrossRefGoogle Scholar
  3. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553. CrossRefGoogle Scholar
  4. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003c) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828CrossRefGoogle Scholar
  5. Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM (2013) Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B Biointerfaces 107:227–234CrossRefGoogle Scholar
  6. Akbarzadeh A, Davood ZAF, Mohammad RM, Norouzian D, Tangestaninejad S, Moghadam M, Bararpour N (2009) Synthesis and characterization of gold nanoparticles by tryptophane. Am J Appl Sci 6:691–695CrossRefGoogle Scholar
  7. Alexopoulos CJ, Mims CW, Blackwell M (2007) Introductory mycology. Wiley, IndiaGoogle Scholar
  8. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7:753–763. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Basavegowda N, SobczakKupiec A, Malina D, Yathirajan HS, Keerthi VR, Chandrashekar N, Dinkar S, Liny P (2013) Plant mediated synthesis of gold nanoparticles using fruit extracts of Ananas comosus (L.) (pineapple) and evaluation of biological activities. Adv Mater Lett 4:332–337. CrossRefGoogle Scholar
  11. Bhambure R, Bule M, Shaligram N, Kamat M, Singhal R (2009) Extracellular biosynthesis of gold nanoparticles using Aspergillus niger—its characterization and stability. Chem Eng Technol 32:1036–1041CrossRefGoogle Scholar
  12. Binupriya AR, Sathishkumar M, Vijayaraghavan K, Yun SI (2010) Bioreduction of trivalent aurum to nanocrystalline gold particles by active and inactive cells and cell free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177:539–545CrossRefGoogle Scholar
  13. Brown S, Sarikaya M, Johnson EA (2000) A genetic analysis of crystal growth. J Mol Biol 299:725–735CrossRefGoogle Scholar
  14. Castro LE, Vilchis NAR, Avalos BM (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83:42–48CrossRefGoogle Scholar
  15. Chauhan A, Zubair S, Tufail S, Sherwani A, Sajid M, Raman SC, Azam A, Owais M (2011) Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomedicine 6:2305–2319PubMedPubMedCentralGoogle Scholar
  16. Daraee H, Eatemadi A, Abbasi E, Aval SF, Kouhi M, Akbarzadeh A (2016) Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol 44:410–422. CrossRefPubMedGoogle Scholar
  17. Das SK, Dickinson C, Laffir F, Brougham DF, Marsili E (2012) Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem 14:1322–1344CrossRefGoogle Scholar
  18. Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49–73. CrossRefPubMedGoogle Scholar
  19. Du L, Xian L, Feng JX (2011) Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanopart Res 13:921–930CrossRefGoogle Scholar
  20. Duran N, Seabra AB (2009) Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl Microbiol Biotechnol 95:275–288. CrossRefGoogle Scholar
  21. Feng ZV, Gunsolus IL, Qiu TA, Hurley KR, Nyberg LH, Frew H, Johnson KP, Vartanian AM, Jacob LM, Lohse SE, Torelli MD, Hamers RJ, Murphy CJ, Haynes CL (2015) Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria. Chem Sci 6:5186–5196. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Forest V, Cottier M, Pourchez J (2015) Electrostatic interactions favor the binding of positive nanoparticles on cells: a reductive theory. Nano Today 10:677–680CrossRefGoogle Scholar
  23. Garidel P, Schott H (2006) Fourier-transform Midinfrared spectroscopy for analysis and screening of liquid protein formulations. Bioprocess Int 4:48–55Google Scholar
  24. Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39:22–28. CrossRefGoogle Scholar
  25. Gupta S, Singh SP, Singh R (2015) Synergistic effect of reductase and keratinase for facile synthesis of protein-coated gold nanoparticles. J Microbiol Biotechnol 25:612–619. CrossRefPubMedGoogle Scholar
  26. Hassan M, Haque E, Reddy KR, Minett AI, Chen J, Gomes VG (2014) Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6:11988–11994CrossRefGoogle Scholar
  27. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater Lett 61:3984–3987. CrossRefGoogle Scholar
  28. Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Notices.
  29. Islam MS, Haque MS, Islam MM (2012) Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics 13:493. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jacobson KH, Gunsolus IL, Kuech TR, Troiano JM, Melby ES, Lohse SE, Hu D, Chrisler WB, Murphy CJ, Orr G, Geiger FM, Haynes CL, Pedersen JA (2015) Lipopolysaccharide density and structure govern the extent and distance of nanoparticle interaction with actual and model bacterial outer membranes. Environ Sci Technol 49:10642–10650. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jain S, Mehata MS (2017) Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci Rep 7:15867. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Juibari MM, Yeganeh LP, Abbasalizadeh S, Azarbaijani R, Mousavi SH, Tabatabaei M, Jouzani GS, Salekdeh GH (2015) Investigation of a hot spring extremophilic Ureibacillus thermosphaericus strain thermos-BF for extracellular biosynthesis of functionalized gold nanoparticles. Bionanoscience 5:233–241CrossRefGoogle Scholar
  33. Kalishwaralal K, Deepak V, Pandian SRK (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 77:257–262CrossRefGoogle Scholar
  34. Khan SK (2007) M. phaseolina as causal agent for charcoal rot of sunflower. Mycopathologia 5:111–118Google Scholar
  35. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707. CrossRefPubMedGoogle Scholar
  36. Kitching M, Ramani M, Marsili E (2015) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol 8:904–917. CrossRefPubMedGoogle Scholar
  37. Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S (2007) Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta 53:186–192CrossRefGoogle Scholar
  38. Kumar SA, Peter YA, Nadeau JL (2008) Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19:495101. CrossRefPubMedGoogle Scholar
  39. Lengke MF, Southam G, Cosmochim G (2005) The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex. Geochim Cosmochim Acta 69:3759–3772. CrossRefGoogle Scholar
  40. Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)-thiosulfate and gold(III)--chloride complexes. Langmuir 22:2780–2787. CrossRefPubMedGoogle Scholar
  41. Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40:6304–6309CrossRefGoogle Scholar
  42. Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Sahar A, Riley MA, Rotello VM (2014) Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8:10682–10686CrossRefGoogle Scholar
  43. Lin Z, Wu J, Xue R, Yang Y (2005) Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae. Spectrochim Acta A Mol Biomol Spectrosc 61:761–765CrossRefGoogle Scholar
  44. Lin J, Zhang H, Chen Z, Zheng Y (2010) Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4:5421–5429. CrossRefPubMedGoogle Scholar
  45. Maliszewska I (2013) Microbial mediated synthesis of gold nanoparticles: preparation, characterization and cytotoxicity studies. Dig J Nanomater Bios 8:1123–1131Google Scholar
  46. Maliszewska I, Aniszkiewicz Ł, Sadowski Z (2009) Biological synthesis of gold nanostructures using the extract of Trichoderma koningii. Acta Phys Polon A 116:163–165CrossRefGoogle Scholar
  47. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492CrossRefGoogle Scholar
  48. Menon S, Rajeshkumar S, Kumar V (2017) A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour Effic Technol 3:516–527. CrossRefGoogle Scholar
  49. Mihail JD, Taylor SJ (1995) Interpreting variability among isolates for Macrophomina phaseolina in pathogenicity, pycnidium production and chlorate utilization. Can J Bot 10:1596–1603. CrossRefGoogle Scholar
  50. Mishra AN, Bhadaurla S, Singh Gaur M, Pasricha R (2010) Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. JOM 62:45–48CrossRefGoogle Scholar
  51. Mishra A, Tripathy SK, Wahab R, Jeong S-H, Hwang I, Yang YB, Kim YS, Shin HS, Yun SI (2011) Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microbiol Biotechnol 92:617–630CrossRefGoogle Scholar
  52. Mishra A, Tripathy SK, Yuna SI (2012) Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia coli and Staphylococcus aureus. Process Biochem 47:701–711CrossRefGoogle Scholar
  53. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajaykumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl 4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Edu 40:3585–3588CrossRefGoogle Scholar
  54. Narayanan KB, Sakthivel N (2011a) Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Colloids Surf A Physicochem Eng Asp 380:156–161CrossRefGoogle Scholar
  55. Narayanan KB, Sakthivel N (2011b) Synthesis and characterization of nanogold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J Hazard Mater 189:519–515CrossRefGoogle Scholar
  56. Narayanan KB, Sakthivel N (2013) Mycocrystallization of gold ions by the fungus Cylindrocladium floridanum. World J Microbiol Biotechnol 29:2207–2211CrossRefGoogle Scholar
  57. Narkeviciute I, Chakthranont P, Mackus AJM, Hahn C, Pinaud BA, Bent SF, Jaramillo TF (2016) Tandem core–shell Si–Ta3N5 photoanodes for photoelectrochemical water splitting. Nano Lett 16:7565–7572CrossRefGoogle Scholar
  58. Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta Mol Biomol Spectrosc 73:374–381CrossRefGoogle Scholar
  59. Ramezani F, Ramezani M, Talebi S (2010) Mechanistic aspects of biosynthesis of nanoparticles by several microbes. Nanocon 10:12–14Google Scholar
  60. Ravindra P (2009) Protein-mediated synthesis of gold nanoparticles. Mater Sci Eng B 163:93–98. CrossRefGoogle Scholar
  61. Reddy KR, Lee K-S, Iyenger AG (2007) Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J Nanosci Nanotechnol 7:3117–3125. CrossRefPubMedGoogle Scholar
  62. Reddy KR, Sin BC, Yoo CH, Park W, Ryu KS, Lee J-S, Sohn D, Lee Y (2008) A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scr Mater 58:1010–1013CrossRefGoogle Scholar
  63. Reddy KR, Nakata K, Ochiai T, Murakami T, Tryk DA, Fujishima A (2011) Facile fabrication and photocatalytic application of ag nanoparticles-TiO2 nanofiber composites. J Nanosci Nanotechnol 11:3692–3695CrossRefGoogle Scholar
  64. Reddy KR, Gomes V, Hassan M (2014) Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater Res Express 1:015012. CrossRefGoogle Scholar
  65. Roy K, Lahiri S (2006) A green method for synthesis of radioactive gold nanoparticles. Green Chem 8:1063–1066. CrossRefGoogle Scholar
  66. Roy S, Das TK, Maiti GP, Basu U (2016) Microbial biosynthesis of nontoxic gold nanoparticles. Mater Sci Eng B 203:41–51CrossRefGoogle Scholar
  67. Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3. CrossRefGoogle Scholar
  68. Sanghi R, Verma P (2010) pH dependent fungal proteins in the “green” synthesis of gold nanoparticles. Adv Mater Lett 1:193–199CrossRefGoogle Scholar
  69. Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv Chem Eng Sci 1:154–162. CrossRefGoogle Scholar
  70. Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K (2012) Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst Eng 35:637–643CrossRefGoogle Scholar
  71. SathishKumar K, Amutha R, Arumugam P, Berchmans S (2011) Synthesis of gold nanoparticles: an ecofriendly approach using Hansenula anomala. ACS Appl Mater Interfaces 3:1418–1425CrossRefGoogle Scholar
  72. Sawle BD, Salimath B, Deshpande R, Bedre MR, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9:035012. CrossRefGoogle Scholar
  73. Schweiger C, Hartmann R, Zhang F, Parak WJ, Kissel TH, Gil PR (2012) Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J Nanobiotechnol 10:28. CrossRefGoogle Scholar
  74. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  75. Siddiqi KS, Husen A (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nano Res Lett 11:98. CrossRefGoogle Scholar
  76. Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 57:97–101CrossRefGoogle Scholar
  77. Sugunan A, Dutta J (2006) Novel synthesis of gold nanoparticles in aqueous media. Mater Res Soc Symp Proc 901E:55.1–55.6Google Scholar
  78. Suresh AK, Pelletier DA, Wang W, Broich ML, Moon JW, Gu B, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2011) Biofabrication of discrete spherical gold nanoparticles using the metal reducing bacterium Shewanella oneidensis. Acta Biomater 7:2148–2152CrossRefGoogle Scholar
  79. Vala AK (2015) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Prog Sustain Energy 34:194–197CrossRefGoogle Scholar
  80. Varshney R, Mishra AN, Bhadauria S, Gaura MS (2009) A novel microbial route to synthesize silver nanoparticles using fungus Hormoconis resinae. Dig J Nanomater Bios 4:349–355Google Scholar
  81. Xie J, Lee JY, Wang DIC, Ting YP (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C 111:16858–16865CrossRefGoogle Scholar
  82. Yang X, Yang M, Bo P, Vara M, Xia Y (2015) Gold nanomaterials at work in biomedicine. Chem Rev 115:10410–10488. CrossRefPubMedGoogle Scholar
  83. Zhang YP, Lee SH, Reddy KR, Gopalan AI, Lee KP (2007) Synthesis and characterization of core-shell SiO2 nanoparticles/poly(3-aminophenylboronic acid) composites. J Appl Polym Sci 104:2743–2750CrossRefGoogle Scholar
  84. Zhang X, He X, Wang K, Yang X (2011) Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species. J Biomed Nanotechnol 7:245–254CrossRefGoogle Scholar

Copyright information

© Università degli studi di Milano 2019

Authors and Affiliations

  1. 1.Amity Institute of Microbial BiotechnologyAmity University Uttar PradeshNoidaIndia
  2. 2.ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM)MauIndia

Personalised recommendations