Advertisement

Microquantitation of Van Gogh-like Protein 1 by Using Antibody-Conjugated Magnetic Beads

  • Su-Jung Yeom
  • Shin-Yeong Lee
  • İsa Taş
  • Mijin Lee
  • So-Yeon Park
  • Sang-Chul Jung
  • Kyung Keun Kim
  • Hangun KimEmail author
Original Article
  • 3 Downloads

Abstract

Van Gogh-like protein 1 (VANGL1) is an integral membrane protein that has a decisive effect on invasion, migration, and metastasis of tumor cells in various cancers including colorectal cancer. Elevation of VANGL1 level in cancer tissue is often observed with progressive and metastatic colorectal cancer. Therefore, detection of VANGL1 level in patient specimens can be used as a diagnostic marker for colorectal cancer screening. In this study, we developed magnetic beads that conjugate the VANGL1 antibody, which can be used for quantitative analysis of VANGL1. The procedure for bead preparation was optimized, and detection analysis was validated by using Caco2 and HT29 colorectal cancer cell lysates. Through the procedure, VANGL1 level from cell lysates of Caco2 and HT29 cells were quantified to estimate whether the antibody-conjugated magnetic bead can be used to trace amounts of VANGL1. Results from VANGL1 level obtained by using the antibody-conjugated magnetic beads suggest that the procedure has high precision and sensitivity in analyzing VANGL1. In conclusion, the results indicate that the method is appropriate for microquantitation of VANGL1 from patient specimens.

Keywords

Colorectal cancer specific antigen VANGL1 Protein Quantitation Diagnosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, Y. Wnt/Planar cell polarity signaling: A new paradigm for cancer therapy. Mol. Cancer Ther. 8, 2103–2109 (2009).CrossRefGoogle Scholar
  2. 2.
    Cetin, G.O., Toylu, A., Atabey, N., Sercan, Z. & Sakizli, M. Downregulation of VANGL1 Inhibits Cellular Invasion Rather than Cell Motility in Hepatocellular Carcinoma Cells Without Stimulation. Genet. Test. Mol. Biomarkers. 19, 283–287 (2015).CrossRefGoogle Scholar
  3. 3.
    Yagyu, R., Hamamoto, R., Furukawa, Y., Okabe, H., Yamamura, T. & Nakamura Y. Isolation and characterization of a novel human gene, VANGL1, as a therapeutic target for hepatocellular carcinoma. Int. J. Oncol. 20, 1173–1178 (2002).Google Scholar
  4. 4.
    Kho, D.H., Bae, J.A., Lee, J.H., Cho, H.J., Cho, S.H., Lee, J.H., Seo, Y.W., Ahn, K.Y., Chung, I.J. & Kim, K.K. KITENIN recruits Dishevelled/PKCd to form a functional complex and controls the migration and invasiveness of colorectal cancer cells. Gut 58, 509–519 (2009).CrossRefGoogle Scholar
  5. 5.
    Lee, S., Song, Y.-A., Park, Y.-L., Cho, S.-B., Lee, W.-S., Lee, J.-H, Chung, I.-J., Kim, K.-K., Rew, J.-S. & Joo, Y.-E. Expression of KITENIN in human colorectal cancer and its relation to tumor behavior and progression. Pathol. Int. 61, 210–220 (2011).CrossRefGoogle Scholar
  6. 6.
    Bae, J.A., Kho, D.H., Sun, E.G., Ko, Y.-S., Yoon, S., Lee, K.H., Ahn, K.Y., Lee, J.H., Joo, Y.E., Chung, I.J., Lee, S.H., Kim, H. & Kim, K.K. Biology of Human Tumors Elevated Coexpression of KITENIN and the ErbB4 CYT-2 Isoform Promotes the Transition from Colon Adenoma to Carcinoma Following APC loss. Clin. Cancer Res. 22(5), 1284–1294 (2016).CrossRefGoogle Scholar
  7. 7.
    Bae, J.A., Kho, D.H., Sun, E.G., Ko, Y.S., Yoon, S., Lee, K.H., Ahn, K.Y., Lee, J.H., Joo, Y.E., Chung, I.J., Lee, S.H., Kim, H. & Kim, K.K. An unconventional KITENIN/ErbB4-mediated downstream signal of EGF upregulates c-Jun and the invasiveness of colorectal cancer cells. Clin Cancer Res. 20, 4115–28 (2014).CrossRefGoogle Scholar
  8. 8.
    Lee, J.H., Park, S.R., Chay, K.O., Seo, Y.W., Kook, H., Ahn, K.Y., Kim, Y.J. & Kim, K.K. KAI1 COOHterminal interacting tetraspanin (KITENIN), a member of the tetraspanin family, interacts with KAI1, a tumor metastasis suppressor, and enhances metastasis of cancer. Cancer Res. 64, 4235–43 (2004).CrossRefGoogle Scholar
  9. 9.
    Lee, J.K., Bae, J.A., Sun, E.G., Kim, H.D., Yoon, T.M., Kim, K., Lee, J.H., Lim, S.C & Kim, K.K. KITENIN increases invasion and migration of mouse squamous cancer cells and promotes pulmonary metastasis in a mouse squamous tumor model. FEBSLett. 583, 711–717 (2009).CrossRefGoogle Scholar
  10. 10.
    Ryu, H.S., Park, Y.L., Park, S.J., Lee, J.H., Cho, S.B., Lee, W.S., Chung, I.J., Kim, K.K., Lee, K.H., Kweon, S.S. & Joo, Y.E. KITENIN is associated with tumor progression in human gastric cancer. Anticancer Res. 30, 3479–86 (2010).Google Scholar
  11. 11.
    Cho, S.B., Park, Y.L., Park, S.J., Park, S.Y., Lee, W.S., Park, C.H., Choi. S.K., Heo, Y.H., Koh, Y.S., Cho, C.K., Chung, I.J., Kim, K.K., Kim, S. & Joo, Y.E. KITENIN is associated with activation of AP-1 target genes via MAPK cascades signaling in human hepatocellular carcinoma progression. Oncol. Res. 19, 115–23 (2011).Google Scholar
  12. 12.
    Rowe, A. & Jackson P. Expression of KITENIN, a KAI1/CD82 binding protein and metastasis enhancer, in bladder cancer cell lines: Relationship to KAI1/ CD82 levels and invasive behaviour. Oncol. Rep. 16, 1267–1272 (2006).Google Scholar
  13. 13.
    Wagner, B. Freer, H., Rollins, A., Erb, H.N., Lu, Z. & Gröhn, Y. Development of a multiplex assay for the detection of antibodies to Borrelia burgdorferi in horses and its validation using Bayesian and conventional statistical methods. Vet. Immunol. Immunopathol. 144, 374–381 (2011).CrossRefGoogle Scholar
  14. 14.
    Houser, B. Bio-rad’s Bio-Plex® suspension array system, xMAP technology overview. Arch. Physiol. Biochem. 118, 192–196 (2012).CrossRefGoogle Scholar
  15. 15.
    Lee, J.K., Yoon, T.M., Seo, D.J., Sun, E.G., Bae, J.A., Lim, S.C., Choi, Y.D., Lee, J.H., Joo, Y.E. & Kim, K.K. KAI1 COOH-terminal interacting tetraspanin (KITENIN) expression in early and advanced laryngeal cancer. Laryngoscope 120, (2010).Google Scholar
  16. 16.
    Yoon, T.M., Kim, S.-A., Lee, J.K., Park, Y.-L., Kim, G.Y., Joo, Y.-E., Lee, J.H., Kim, K.K. & Lim, S.C. Expression of KITENIN and its association with tumor progression in oral squamous cell carcinoma. Auris, Nasus, Larynx 40, 222–226 (2013).CrossRefGoogle Scholar
  17. 17.
    Anastas, J.N., Biechele, T.L., Robitaille, M., Muster, J., Allison, K.H., Angers, S. & Moon, R.T. A protein complex of SCRIB, NOS1AP and VANGL1 regulates cell polarity and migration and is associated with breast cancer progression. Oncogene 31, 3696–3708 (2012).CrossRefGoogle Scholar
  18. 18.
    Lee, K.H., Ahn, E.-J., Oh, S.-J., Kim, O., Joo, Y.-E., Bae, J.-A., Yoon, S., Ryu, H.-H., Jung, S., Kim, K.-K., Lee, J.-H. & Moon, K.-S. KITENIN promotes glioma invasiveness and progression, associated with the induction of EMT and stemness markers. Oncotarget 6, 3240–3253 (2015).Google Scholar
  19. 19.
    Lee, S., Song, Y.-A, Park, Y.-L., Cho, S.-B., Lee, W.-S., Lee, J.-H., Chung, I.-J., Kim, K.-K., Rew, J.-S. & Joo, Y.-E. Expression of KITENIN in human colorectal cancer and its relation to tumor behavior and progression. Pathol. Int. 6, 210–220 (2011).CrossRefGoogle Scholar
  20. 20.
    Oh, H.H., Park, K.-J., Kim, N., Park, S.-Y., Park, Y.-L., Oak, C.-Y., Myung, D.-S., Cho, S.-B., Lee, W.-S., Kim, K.-K. & Joo, Y.-E. Impact of KITENIN on tumor angiogenesis and lymphangiogenesis in colorectal cancer. Oncol. Rep. 35, 253–260 (2016).CrossRefGoogle Scholar
  21. 21.
    Wagner, B., Freer, H., Rollins, A. & Erb, H.N. A fluorescent bead-based multiplex assay for the simultaneous detection of antibodies to B. burgdorferi outer surface proteins in canine serum. Vet. Immunol. Immunopathol. 140, 190–198 (2011).CrossRefGoogle Scholar
  22. 22.
    Lee, S-D., Lee, M., Park, S.-Y., Ha, Y., Jung, S.-C. & Kim, H. Microquantitation of Prostate-Specific Antigen by Using Antibody-Conjugated Magnetic Microsphere Beads. J. Nanosci. Nanotechnol. 18, 1474–1477 (2018).CrossRefGoogle Scholar
  23. 23.
    Kim, H., Ki, H., Park, H-S. & Kim K. Presenilin-1 D257A and D385A mutants fail to cleave Notch in their endoproteolyzed forms, but only presenilin-1 D385A mutant can restore its gamma-secretase activity with the compensatory overexpression of normal C-terminal fragment. J.Biol. Chem. 280, 22462–72 (2018).CrossRefGoogle Scholar
  24. 24.
    Sun, E.G., Lee, K.H., Ko, Y.S., Choi, H.J, Yang, J.I., Lee, J.H., Chung, I.J., Paek, Y.W., Kim, H., Bae, J.A. & Kim, K.K. KITENIN functions as a fine regulator of ErbB4 expression level in colorectal cancer via protection of ErbB4 from E3-ligase Nrdp1-mediated degradation. Mol. Carcinog. 56, 1068–1081 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean BioChip Society and Springer 2018

Authors and Affiliations

  1. 1.College of PharmacySunchon National UniversitySunchonKorea
  2. 2.Department of Environmental EngineeringSunchon National UniversitySunchonKorea
  3. 3.Department of PharmacologyChonnam National University Medical SchoolHwasunKorea

Personalised recommendations