Advertisement

3 Biotech

, 10:63 | Cite as

Evaluation of genetic diversity among aquatic and fecal isolates of Escherichia coli using multilocus variable number of tandem repeat analysis

  • Neha Khare
  • Megha Kaushik
  • Sanjay Kumar
  • Pooja GulatiEmail author
Original Article
  • 11 Downloads

Abstract

In developing countries like India, fecal pollution of surface waters is a major threat to public and environmental health. The aim of the study was to assess serological, phylogenetic and molecular diversity among aquatic Escherichia coli isolates from Yamuna river and their comparison with the animal fecal isolates. A total of 97 E. coli isolates from Yamuna river and domesticated animals were characterized by multilocus variable number tandem repeat analysis (MLVA) using four VNTR loci. The pathogenicity of these strains by serological and phylogenetic analysis was also determined. E. coli strains were differentiated into 53 distinct MLVA types with high discriminatory power, Simpson's index of 0.95 (95% CI 0.923–0.978). Cluster analysis and population modeling using minimum spanning tree suggested a possible epidemiological linkage among aquatic and fecal isolates. The study also reported the presence of highly diverse and pathogenic serotypes belonging to STEC and EPEC strains, particularly O157 and high prevalence of pathogenic phylogroups (phylogroup, B2 and D). The presence of such a high molecular heterogeneity among aquatic and fecal E. coli isolates emphasizes upon the need to develop proper fecal pollution abatement strategies for Indian natural bodies.

Keywords

E. coli Serotype Phylogroup VNTR MLVA Clonal relationship 

Notes

Acknowledgements

The present study was carried out with the financial support provided by UGC-RGNF [F1-17.1/2016-17/RGNF-2015-17-SC-HAR-18413/(SA-III/Website)] and UGC major research project (Grant No. UGC-41-1172/2012). NK and MK thank Maharshi Dayanand University for providing University Research Scholarship. MK expresses sincere gratitude to CSIR for Senior Research Fellowship (No. 09/382(0212)/19-EMR-I). The authors also wish to acknowledge FIST Grant funded by Department of Science and Technology (No. 1196 SR/FST/LS-I/2017/4) for improvement of infrastructural facilities. The authors are also grateful to National Salmonella and Escherichia Centre, Central Research Institute, Kasauli, Himachal Pradesh, India for serotyping E. coli isolates.

Author contribution

P.G. conceived and planned the experiments. N.K. carried out the experiments. P.G., N.K. and M.K. contributed to the interpretation of the results. All the authors provided critical feedback and helped shape the research, analysis and manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. Bai X, Hu B, Xu Y et al (2016) Molecular and phylogenetic characterization of non-O157 Shiga toxin-producing Escherichia coli strains in China. Front Cell Infect Microbiol 6:143PubMedPubMedCentralGoogle Scholar
  2. Bajaj P, Singh NS, Kanaujia PK et al (2015) Distribution and molecular characterization of genes encoding CTX-M and AmpC βlactamases in Escherichia coli isolated from an Indian urban aquatic environment. Sci Total Environ 505:350–356PubMedGoogle Scholar
  3. Berthe T, Ratajczak M, Clermont O et al (2013) Evidence for coexistence of distinct Escherichia coli populations in various aquatic environments and their survival in estuary water. Appl Environ Microbiol 79:4684–4693PubMedPubMedCentralGoogle Scholar
  4. Bettelheim KA (2007) The non-O157 Shiga-toxigenic (verocytotoxigenic) Escherichia coli; under-rated pathogens. Crit Rev Microbiol 33:67–87PubMedGoogle Scholar
  5. Caméléna F, Birgy A, Smail Y et al (2019) Rapid and simple universal Escherichia coli genotyping method based on multiple-locus variable-number tandem-repeat analysis using single-tube multiplex PCR and standard gel electrophoresis. Appl Environ Microbiol 85:e02812–2818PubMedPubMedCentralGoogle Scholar
  6. Carlos C, Pires MM, Stoppe NC et al (2010) Escherichia coli phylogenetic group determination and its application in the identification of the major animal source of fecal contamination. BMC Microbiol 10:161PubMedPubMedCentralGoogle Scholar
  7. Chandran A, Hatha AA, Varghese S et al (2008) Prevalence of multiple drug resistant Escherichia coli serotypes in a Tropical Estuary, India. Microbes Environ 23:153–158PubMedGoogle Scholar
  8. Clermont O, Bonacorsi P, Bingen E (2000) Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66:4555–4558PubMedPubMedCentralGoogle Scholar
  9. Cooley M, Carychao D, Miksza L et al (2007) Incidence and tracking of Escherichia coli O157:H7 in a major produce production region in California. PLoS ONE ONE 2:e1159Google Scholar
  10. Cowan LS, Mosher L, Diem L et al (2002) Variable-number tandem repeat typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 by using mycobacterial interspersed repetitive units. J Clin Microbiol 40:1592–1602PubMedPubMedCentralGoogle Scholar
  11. Croxen MA, Law RJ, Scholz R et al (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26:822–880PubMedPubMedCentralGoogle Scholar
  12. Dahyot S, Lebeurre J, Argemi X et al (2018) Multiple-locus variable number tandem repeat analysis (MLVA) and tandem repeat sequence typing (TRST), helpful tools for subtyping Staphylococcus lugdunensis. Sci Rep 8:11669PubMedPubMedCentralGoogle Scholar
  13. Finley RL, Collignon P, Larsson DG et al (2013) The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis 57:704–710PubMedGoogle Scholar
  14. Gorgé O, Lopez S, Hilaire V et al (2008) Selection and validation of a multilocus variable-number tandem-repeat analysis panel for typing Shigella spp. J Clin Microbiol 46:1026–1036PubMedPubMedCentralGoogle Scholar
  15. Grundmann H, Hori S, Tanner G (2001) Determining confidence intervals when measuring genetic diversity and the discriminatory abilities of typing methods for microorganisms. J Clin Microbiol 39:4190–4192PubMedPubMedCentralGoogle Scholar
  16. Gulati P, Varshney RK, Virdi JS (2009) Multilocus variable number tandem repeat analysis as a tool to discern genetic relationships among strains of Yersinia enterocolitica biovar 1A. J Appl Microbiol 107:875–884PubMedGoogle Scholar
  17. Hagedorn C, Lepo JE, Hellein KN et al (2011) Microbial source tracking in China and developing nations. In: Hagedorn C, Blanch AR, Harwood VJ (eds) Microbial source tracking: methods, applications and case studies. Springer-Science, New York, pp 515–544Google Scholar
  18. Hamelin K, Bruant G, Shaarawi A et al (2007) Occurrence of virulence and antimicrobial resistance genes in Escherichia coli isolates from different aquatic ecosystems within the St. Clair River and Detroit River areas. Appl Environ Microb 73:477–484Google Scholar
  19. Hamner S, Broadaway SC, Mishra VB et al (2007) Isolation of potentially pathogenic Escherichia coli O157:H7 from the Ganges River. Appl Environ Microbiol 73:2369–2372PubMedPubMedCentralGoogle Scholar
  20. Higgins J, Hohn C, Hornor S et al (2007) Genotyping of Escherichia coli from environmental and animal samples. J Microbiol Methods 70(2):227–235PubMedGoogle Scholar
  21. Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26:2465–2466PubMedPubMedCentralGoogle Scholar
  22. Jamwal P, Mittal AK, Mouchel JM (2011) Point and non-point microbial source pollution: a case study of Delhi. Phys Chem Earth 36:490–499Google Scholar
  23. Kaushik M, Khare N, Kumar S et al (2019) High prevalence of antibiotic resistance and integrons in Escherichia coli isolated from urban river water, India. Microb Drug Resist 25:359–370PubMedGoogle Scholar
  24. Kawamori F, Hiroi M, Harada T et al (2008) Molecular typing of Japanese Escherichia coli O157:H7 isolates from clinical specimens by multilocus variable-number tandem repeat analysis and PFGE. J Med Microbiol 57:58–63PubMedGoogle Scholar
  25. Krüger A, Lucchesi PM, Sanso AM et al (2015) Genetic characterization of Shiga toxin-producing Escherichia coli O26:H11 strains isolated from animal, food, and clinical samples. Front Cell Infect Microbiol 5:74PubMedPubMedCentralGoogle Scholar
  26. Lazzarini LC, Rosenfeld J, Huard RC et al (2012) Mycobacterium tuberculosis spoligotypes that may derive from mixed strain infections are revealed by a novel computational approach. Infect Genet Evol 12:798–806PubMedGoogle Scholar
  27. Lindstedt BA, Heir E, Gjernes E et al (2003) DNA fingerprinting of Salmonella enterica subsp. enterica serovar Typhimurium with emphasis on phage type DT104 based on variable number of tandem repeat loci. J Clin Microbiol 41:1469–1479PubMedPubMedCentralGoogle Scholar
  28. Lindstedt BA, Brandal LT, Aas L et al (2007) Study of polymorphic variable-number of tandem repeats loci in the ECOR collection and in a set of pathogenic Escherichia coli and Shigella isolates for use in a genotyping assay. J Microbiol Methods 69:197–205PubMedGoogle Scholar
  29. Løbersli I, Haugum K, Lindstedt BA (2012) Rapid and high resolution genotyping of all Escherichia coli serotypes using 10 genomic repeat-containing loci. J Microbiol Methods 88:134–139PubMedGoogle Scholar
  30. Luna GM, Vignaroli C, Rinaldi C et al (2010) Extraintestinal Escherichia coli carrying virulence genes in coastal marine sediments. Appl Environ Microbiol 76:5659–5668PubMedPubMedCentralGoogle Scholar
  31. Mclellan SL (2004) Genetic diversity of Escherichia coli isolated from urban rivers and beach water. Appl Environ Microbiol 70:4658–4665PubMedPubMedCentralGoogle Scholar
  32. Micenková L, Bosák J, Vrba M et al (2016) Human extraintestinal pathogenic Escherichia coli strains differ in prevalence of virulence factors, phylogroups, and bacteriocin determinants. BMC Microbiol 16:218–225PubMedPubMedCentralGoogle Scholar
  33. Mohapatra BR, Broersma K, Mazumder A (2007) Comparison of five rep-PCR genomic fingerprinting methods for differentiation of fecal Escherichia coli from humans, poultry and wild birds. FEMS Microbiol Lett 277:98–106PubMedGoogle Scholar
  34. Murray PR (2010) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: usefulness for taxonomy and epidemiology. Clin Microbiol Infect 16:1626–1630PubMedGoogle Scholar
  35. Noller AC, McEllistrem MC, Pacheco AGF et al (2003) Multilocus variable-number tandem repeat analysis distinguishes outbreak and sporadic Escherichia coli O157:H7 isolates. J Clin Microbiol 41:5389–5397PubMedPubMedCentralGoogle Scholar
  36. Onteniente L, Brisse S, Tassios PT et al (2003) Evaluation of the polymorphisms associated with tandem repeats for Pseudomonas aeruginosa strain typing. J Clin Microbiol 41:4991–4997PubMedPubMedCentralGoogle Scholar
  37. Ram S, Vajpayee P, Shanker R (2007) Prevalence of multiantimicrobial-agent resistant shiga toxin and enterotoxin producing Escherichia coli in surface waters of river Ganga. Environ Sci Technol 41:7383–7388PubMedGoogle Scholar
  38. Saffari F, Monsen T, Karmostaji A et al (2017) Significant spread of extensively drug resistant Acinetobacter baumannii genotypes of clonal complex 92 among intensive care unit patients in a university hospital in Southern Iran. J Med Microbiol 66:1656–1662PubMedGoogle Scholar
  39. Sasakova N, Gregova G, Takacova D et al (2018) Pollution of surface and ground water by sources related to agricultural activities. Front Sustain Food Syst 2:42Google Scholar
  40. Shangkuan YH, Yang JF, Lin HC et al (2000) Comparison of PCR-RFLP, ribotyping and ERIC-PCR for typing Bacillus anthracis and Bacillus cereus strains. J Appl Microbiol 89:452–462PubMedGoogle Scholar
  41. Stalder T, Barraud O, Casellas M et al (2012) Integron involvement in environmental spread of antibiotic resistance. Front Microbiol 3:119PubMedPubMedCentralGoogle Scholar
  42. Taghadosi R, Shakibaie MR, -Nave H (2019) Antibiotic resistance, ESBL genes, integrons, phylogenetic groups and MLVA profiles of Escherichia coli pathotypes isolated from patients with diarrhea and farm animals in south-east of Iran. Comp Immunol Microbiol Infect Dis 63:117–126PubMedGoogle Scholar
  43. Tymensen LD, Pyrdok F, Coles D et al (2015) Comparative accessory gene fingerprinting of surface water Escherichia coli reveals genetically diverse naturalized population. J Appl Microbiol 119:263–277PubMedGoogle Scholar
  44. van Belkum A (2007) Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA). FEMS Immunol Med Microbiol 49:22–27PubMedGoogle Scholar
  45. van Belkum A, Scherer S, van Alphen L et al (1998) Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62:275–293PubMedPubMedCentralGoogle Scholar
  46. Walk ST, Alm EW, Calhoun LM et al (2007) Genetic diversity and population structure of Escherichia coli isolated from freshwater beaches. Environ Microbiol 9:2274–2288PubMedGoogle Scholar
  47. Weir BS (1990) Genetic data analysis: methods for discrete population genetic data analysis. Sinauer Associates Inc Publishers, SunderlandGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2020

Authors and Affiliations

  1. 1.Medical Microbiology and Bioprocess Technology Laboratory, Department of MicrobiologyMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations