Advertisement

3 Biotech

, 10:10 | Cite as

Functional analysis of a SoxE gene in the oriental freshwater prawn, Macrobrachium nipponense by molecular cloning, expression pattern analysis, and in situ hybridization (de Haan, 1849)

  • Yuning Hu
  • Shubo Jin
  • Hongtuo FuEmail author
  • Hui Qiao
  • Wenyi Zhang
  • Sufei Jiang
  • Yongsheng Gong
  • Yiwei Xiong
  • Yan Wu
Original Article
  • 21 Downloads

Abstract

In this study, a full-length cDNA sequence of SoxE (subgroup E within the Sox family of transcription factors) was cloned from Macrobrachium nipponense and named MnSoxE1. The full-length cDNA of MnSoxE1 is 1748 bp, consisting of a 110 bp 5′ UTR, a 105 bp 3′ UTR, and a 1533 bp ORF that encodes 510 amino acids. Conserved domains showed that MnSoxE1 has a high similarity to the SoxE gene of Penaeus vannamei. Phylogenetic tree analysis classified that MnSoxE1 with the SoxE gene of other arthropods into one clade. These results suggested that MnSoxE1 belongs to the SoxE subgroup. During embryonic development, MnSoxE1 was mainly expressed in the gastrula stage, implicating its involvement in tissue cell differentiation and formation. In the post-larval stages, the expression of MnSoxE1 continued to increase on days 1–10. The expression level in males was significantly higher than that in females. Males are clearly distinguishable from females on post-larval day 25, showing that MnSoxE1 may play a role in promoting early development and germ cell and gonadal differentiation, especially for males. qPCR analysis showed that MnSoxE1 may also be involved in oogonium proliferation during ovary development. Further in situ hybridization analysis revealed that MnSoxE1 was mainly located in oocytes and spermatocytes, especially in sertoli cells, and implies that it may be involved in the development of oocytes and spermatocytes, as well as the maintenance of testes in mature prawns. These results indicate that MnSoxE1 is involved in gonadal differentiation and development in M. nipponense, especially testis development.

Keywords

Macrobrachium nipponense SoxE Temporal and spatial expression In situ hybridization 

Notes

Acknowledgements

This research was supported by National Key R&D Program of China (2018YFD0900201); Central Public-Interest Scientific Institution Basal Research Fund CAFS (2019JBFM02); Jiangsu Agricultural Industry Technology System (JFRS-02); National Natural Science Foundation of China (31572617); China Agriculture Research System-48 (CARS-48); New cultivar breeding Major Project of Jiangsu province (PZCZ201745).

Author contributions

Conceived and designed the experiments: YH, HF, SJ, and HQ. Performed the experiments: YH, SJ, and WZ. The specimens were maintained by YH and YX. Analyzed the data: YH. Contributed reagents/materials/analysis tools: YG and YW.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abramyan J, Feng CW, Koopman P (2009) Cloning and expression of candidate sexual development genes in the cane toad (Bufo marinus). Dev Dyn 238(9):2430–2441PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aflalo ED, Hoang TTT, Nguyen VH, Lam Q, Nguyen DM, Trinh QS, Raviv S, Sagi A (2006) A novel two-step procedure for mass production of all-male populations of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 256(1):468–478CrossRefGoogle Scholar
  3. Bairoch A, Bucher P, Hofmann K (1997) The PROSITE database, its status in 1997. Nucleic Acids Res 25(1):217–221PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barrionuevo F, Bagheri-Fam S, Jr Klattig, Kist R, Taketo MM, Englert C, Scherer G (2006) Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod 74(1):195–201PubMedCrossRefPubMedCentralGoogle Scholar
  5. Barrionuevo F, Georg I, Scherthan H, Lécureuil C, Guillou F, Wegner M, Scherer G (2009) Testis cord differentiation after the sex determination stage is independent of Sox9 but fails in the combined absence of Sox9 and Sox8. Dev Biol 327(2):301–312PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bowles J, Schepers G, Koopman P (2000) Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 227(2):239–255PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chaboissier M-C, Kobayashi A, Vidal VI, Lützkendorf S, van de Kant HJ, Wegner M, de Rooij DG, Behringer RR, Schedl A (2004) Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131(9):1891–1901PubMedCrossRefPubMedCentralGoogle Scholar
  8. Combet C, Blanchet C, Geourjon C, Deleage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25(3):147–150PubMedCrossRefPubMedCentralGoogle Scholar
  9. Crémazy F, Berta P, Girard F (2001) Genome-wide analysis of Sox genes in Drosophila melanogaster. Mech Dev 109(2):371–375PubMedCrossRefGoogle Scholar
  10. De SBP, Moniot B, Poulat F, Berta P (2000) Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development. Dev Dyn 217(3):293–298CrossRefGoogle Scholar
  11. El Jamil A, Kanhoush R, Magre S, Boizet-Bonhoure B, Penrad-Mobayed M (2008) Sex-specific expression of SOX9 during gonadogenesis in the amphibian Xenopus tropicalis. Dev Dyn 237(10):2996–3005PubMedCrossRefPubMedCentralGoogle Scholar
  12. Focareta L, Cole AG (2016) Analyses of Sox-B and Sox-E Family Genes in the Cephalopod Sepia officinalis: revealing the conserved and the unusual. PLoS ONE 11(6):e0157821PubMedPubMedCentralCrossRefGoogle Scholar
  13. Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanović M, Weissenbach J, Mansour S, Young ID, Goodfellow PN (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372(6506):525PubMedCrossRefGoogle Scholar
  14. Griswold MD (1998) The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol 9(4):411–416PubMedCrossRefPubMedCentralGoogle Scholar
  15. Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Münsterberg A, Vivian N, Goodfellow P, Lovellbadge R (1990) A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346(6281):245–250PubMedCrossRefGoogle Scholar
  16. Guo Q, Li S, Lv X, Xiang J, Sagi A, Manor R, Li F (2018) A putative insulin-like androgenic gland hormone receptor gene specifically expressed in male Chinese shrimp. Endocrinology 159(5):2173–2185PubMedCrossRefGoogle Scholar
  17. Hong CS, Saint-Jeannet JP (2005) SOX proteins and neural crest development. Semin Cell Dev Biol 16(6):694–703PubMedCrossRefPubMedCentralGoogle Scholar
  18. Hu Y, Fu H, Qiao H, Sun S, Zhang W, Jin S, Jiang S, Gong Y, Xiong Y, Wu Y (2018) Validation and evaluation of reference genes for quantitative real-time PCR in Macrobrachium Nipponense. Int J Mol Sci 19(8):2258PubMedCentralCrossRefGoogle Scholar
  19. Jäger RJ, Anvret M, Hall K, Scherer G (1990) A human XY female with a frame shift mutation in the candidate testis-determining gene SRY. Nature 348(6300):452PubMedCrossRefGoogle Scholar
  20. Janssen R, Andersson E, Betnér E, Bijl S, Fowler W, Höök L, Leyhr J, Mannelqvist A, Panara V, Smith K (2018) Embryonic expression patterns and phylogenetic analysis of panarthropod sox genes: insight into nervous system development, segmentation and gonadogenesis. BMC Evol Biol 18(1):88PubMedPubMedCentralCrossRefGoogle Scholar
  21. Jin S, Fu H, Zhou Q, Sun S, Jiang S, Xiong Y, Gong Y, Qiao H, Zhang W (2013) Transcriptome analysis of androgenic gland for discovery of novel genes from the oriental river prawn, Macrobrachium nipponense, using Illumina Hiseq 2000. PLoS ONE 8(10):e76840PubMedPubMedCentralCrossRefGoogle Scholar
  22. Jin S, Zhang Y, Guan H, Fu H, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Yan W (2016) Histological observation of gonadal development during post-larva in oriental river prawn, Macrobrachium nipponense. Chin J Fish 29(4):11–16Google Scholar
  23. Juliano CE, Voronina E, Stack C, Aldrich M, Cameron AR, Wessel GM (2006) Germ line determinants are not localized early in sea urchin development, but do accumulate in the small micromere lineage. Dev Biol 300(1):406–415PubMedCrossRefPubMedCentralGoogle Scholar
  24. Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P (1996) A male-specific role for SOX9 in vertebrate sex determination. Development 122(9):2813–2822PubMedPubMedCentralGoogle Scholar
  25. Kobayashi T, Nagahama Y (2009) Molecular aspects of gonadal differentiation in a teleost fish, the Nile tilapia. Sex Dev 3(2–3):108–117PubMedCrossRefPubMedCentralGoogle Scholar
  26. Koopman P (1999) Sry and Sox9: mammalian testis-determining genes. Cell Mol Life Sci CMLS 55(6–7):839–856PubMedGoogle Scholar
  27. Laudet V, Stehelin D, Clevers H (1993) Ancestry and diversity of the HMG box superfamily. Nucleic Acids Res 21(10):2493–2501PubMedPubMedCentralCrossRefGoogle Scholar
  28. Li F, Qiao H, Fu H, Sun S, Zhang W, Jin S, Jiang S, Gong Y, Xiong Y, Wu Y (2018) Identification and characterization of opsin gene and its role in ovarian maturation in the oriental river prawn Macrobrachium nipponense. Comp Biochem Phys B 218:1–12CrossRefGoogle Scholar
  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) Method. Methods 25(4):402–408CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nagai K (2001) Molecular evolution of Sry and Sox gene. Gene 270(1):161–169PubMedCrossRefPubMedCentralGoogle Scholar
  31. O’Bryan MK, Shuji T, Kennedy CL, Greg S, Shun-Ichi H, Ray MK, Qunsheng D, Dagmar W, Kretser DM, De Mitch E (2008) Sox8 is a critical regulator of adult Sertoli cell function and male fertility. Dev Biol 316(2):359–370PubMedPubMedCentralCrossRefGoogle Scholar
  32. Paola B, Marianne BF, Tatjana SS (2010) Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest. Proc Natl Acad Sci U S A 107(8):3570–3575CrossRefGoogle Scholar
  33. Phochanukul N, Russell S (2010) No backbone but lots of Sox: invertebrate Sox genes. Int J Biochem Cell Biol 42(3):453–464PubMedCrossRefPubMedCentralGoogle Scholar
  34. Qiao H, Xiong Y, Zhang W, Fu H, Jiang S, Sun S, Bai H, Jin S, Gong Y (2015) Characterization, expression, and function analysis of gonad-inhibiting hormone in Oriental River prawn, Macrobrachium nipponense and its induced expression by temperature. Comp Biochem Physiol A Mol Integr Physiol 185:1–8PubMedCrossRefGoogle Scholar
  35. Roumaud P, Haché J, Martin LJ (2018) Expression profiles of Sox transcription factors within the postnatal rodent testes. Mol Cell Biochem 447(1–2):1–13Google Scholar
  36. Sagi A, Dan C, Milner Y (1990) Effect of androgenic gland ablation on morphotypic differentiation and sexual characteristics of male freshwater prawns, Macrobrachium rosenbergii. Gen Comp Endocrinol 77(1):15–22PubMedCrossRefPubMedCentralGoogle Scholar
  37. Seeliger S, Derian CK, Vergnolle N, Bunnett NW, Nawroth R, Schmelz M, Von Der Weid PY, Buddenkotte J, Sunderkötter C, Metze D, Andrade-Gordon P, Harms E, Vestweber D, Luger TA, Steinhoff M (1992) An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO J 11(10):3705–3712CrossRefGoogle Scholar
  38. She ZY, Yang WX (2017) Sry and SoxE genes: How they participate in mammalian sex determination and gonadal development? Semin Cell Dev Biol 63:13–22PubMedCrossRefPubMedCentralGoogle Scholar
  39. Shinzato C (2007) Cnidarian Sox genes and the evolution of function in the Sox gene family. PhD thesis, James Cook UniversityGoogle Scholar
  40. Silva S, Da Morais, Hacker A, Harley V, Goodfellow P, Swain A, Lovell-Badge R (1996) Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 14(1):62–68CrossRefGoogle Scholar
  41. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovellbadge R, Goodfellow PN (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346(6281):240PubMedCrossRefPubMedCentralGoogle Scholar
  42. Sugimoto A, Iino Y, Maeda T, Watanabe Y, Yamamoto M (1991) Schizosaccharomyces pombe ste11 + encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev 5(11):1990–1999PubMedCrossRefPubMedCentralGoogle Scholar
  43. Ting J, Cong-Cong H, Zhen-Yu S, Wan-Xi Y (2013) The SOX gene family: function and regulation in testis determination and male fertility maintenance. Mol Biol Rep 40(3):2187–2194CrossRefGoogle Scholar
  44. Western PS, Harry JL, Graves JA, Sinclair AH (1999) Temperature-dependent sex determination: upregulation of SOX9 expression after commitment to male development. Dev Dyn 214(3):171–177PubMedCrossRefPubMedCentralGoogle Scholar
  45. Wilson MJ, Dearden PK (2008) Evolution of the insect Sox genes. BMC Evol Biol 8(1):120PubMedPubMedCentralCrossRefGoogle Scholar
  46. Yu Y-Q, Ma W-M, Zeng Q-G, Qian Y-Q, Yang J-S, Yang W-J (2014) Molecular cloning and sexually dimorphic expression of two Dmrt genes in the giant freshwater prawn, Macrobrachium rosenbergii. Agric Res 3(2):181–191CrossRefGoogle Scholar
  47. Zhang Y, Fu H, Qiao H, Jin S, Jiang S, Xiong Y, Gong Y, Zhang X (2013) Molecular cloning and expression analysis of transformer-2 gene during development in Macrobrachium nipponense (de Haan 1849). J World Aquacult Soc 13(2):331–340Google Scholar
  48. Zhang Y, Sun S, Fu H, Ge X, Qiao H, Zhang W, Xiong Y, Jiang S, Gong Y, Jin S (2015) Characterization of the male-specific lethal 3 gene in the oriental river prawn, Macrobrachium nipponense. Genet Mol Res 14(2):3106–3120PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Yuning Hu
    • 1
  • Shubo Jin
    • 2
  • Hongtuo Fu
    • 1
    • 2
    Email author
  • Hui Qiao
    • 2
  • Wenyi Zhang
    • 2
  • Sufei Jiang
    • 2
  • Yongsheng Gong
    • 2
  • Yiwei Xiong
    • 2
  • Yan Wu
    • 2
  1. 1.Wuxi Fisheries CollegeNanjing Agricultural UniversityWuxiPeople’s Republic of China
  2. 2.Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research CenterChinese Academy of Fishery SciencesWuxiPeople’s Republic of China

Personalised recommendations