Advertisement

3 Biotech

, 9:443 | Cite as

Comparative analysis of immobilized biocatalyst: study of process variables in trans-esterification reaction

  • C. G. Lopresto
  • M. G. De Paola
  • L. Albo
  • M. F. Policicchio
  • S. ChakrabortyEmail author
  • V. Calabro
Original Article
  • 3 Downloads

Abstract

This study deals with an experimental investigation into the trans-esterification behavior of two biocatalysts produced by different immobilization techniques of the same lipase from Pseudomonas cepacia. Biocatalysts catalyzed trans-esterification of commercial frying oil. It was verified that no enzyme leaching occurs and stepwise addition of ethanol is needed to improve the process performance. When stoichiometric ethanol has been added completely at the beginning of the reaction, percent mass fraction of esters reached 33% after 9 h and 52% after 30 h. Instead, when ethanol has been added in steps, ester production gradually increased at any time. Moreover, different amounts of biocatalyst were added to the reaction system and it was found that it is not necessary to add more than 3% of biocatalyst with respect to the oil mass to avoid inhibition. The immobilization method influences the reaction progress and the intermediate-glyceride profiles were analyzed. Results showed that the two biocatalysts have the same affinity towards triglycerides, but the covalently immobilized lipase (epobond P. cepacia) has a lower affinity towards diglycerides and monoglycerides and, in general, a lower activity than the absorbed lipase (lipo P. cepacia).

Keywords

Trans-esterification Immobilization Biocatalyst Pseudomonas cepacia Reaction system 

Notes

Acknowledgements

The authors are very grateful to SPRIN Technologies (Trieste, Italy) that kindly supplied the biocatalysts, epobond P. Cepacia and lipo P. cepacia.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Al-Zuhair S, Dowaidar A, Kamal H (2009) Dynamic modeling of biodiesel production from simulated waste cooking oil using immobilized lipase. Biochem Eng J 44:256–262.  https://doi.org/10.1016/j.bej.2009.01.003 CrossRefGoogle Scholar
  2. Asri NP, Soe’eib S, Poedjojono B, Suprapto (2018) Alumina supported zinc oxide catalyst for production of biodiesel from kesambi oil and optimization to achieve highest yields of biodiesel, Euro-Mediterranean. J Environ Integr.  https://doi.org/10.1007/s41207-017-0043-8 CrossRefGoogle Scholar
  3. Azeem MW, Hanif MA, Al-Sabahi JN, Khan AA, Naz S, Ijaz A (2016) Production of biodiesel from low priced, renewable and abundant date seed oil. Renew Energy 86:124–132CrossRefGoogle Scholar
  4. Calabrò V, Ricca E, De Paola MG, Curcio S, Iorio G (2010) Kinetics of enzymatic trans-esterification of glycerides for biodiesel production. Bioprocess Biosyst Eng 33:701–710CrossRefGoogle Scholar
  5. Chakraborty S, Drioli E, Giorno L (2012) Development of a two separate phase submerged biocatalytic membrane reactor for the production of fatty acids and glycerol from residual vegetable oil streams. Biomass Bioenerg 46:574–583CrossRefGoogle Scholar
  6. Chakraborty S, Rusli H, Nath A, Sikder J, Bhattacharjee C, Curcio S, Drioli E (2016) Immobilized biocatalytic process development and potential application in membrane separation: a review. Crit Rev Biotechnol 36:43–48.  https://doi.org/10.3109/07388551.2014.923373 CrossRefPubMedGoogle Scholar
  7. Chen G, Ying M, Li W (2006) Enzymatic conversion of waste cooking oils into alternative fuel-biodiesel. Appl Biochem Biotechnol 129–132:911–921CrossRefGoogle Scholar
  8. Chowdhury A, Mitra D (2015) A kinetic study on the Novozyme 435-catalyzed esterification of free fatty acids with octanol to produce octyl esters. Biotechnol Process 31:1494–1499.  https://doi.org/10.1002/btpr.2165 CrossRefGoogle Scholar
  9. De Paola MG, Ricca E, Calabrò V, Curcio S, Iorio G (2009) Factor analysis of transesterification reaction of waste oil for biodiesel production. Bioresour Technol 100:5126–5131.  https://doi.org/10.1016/j.biortech.2009.05.027 CrossRefPubMedGoogle Scholar
  10. Dizge N, Aydiner C, Imer DY, Bayramoglu M, Tanriseven A, Keskinler B (2009) Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer. Bioresour Technol 100:1983–1991.  https://doi.org/10.1016/j.biortech.2008.10.008 CrossRefPubMedGoogle Scholar
  11. Du W, Xu Y-Y, Liu D-H, Li Z-B (2005) Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. J Mol Catal B Enzym 37:68–71.  https://doi.org/10.1016/j.molcatb.2005.09.008 CrossRefGoogle Scholar
  12. Encinar JM, González JF, Sánchez N, Nogales-Delgado S (2019) Sunflower oil transesterification with methanol using immobilized lipase enzymes. Bioprocess Biosyst Eng 42:157–166CrossRefGoogle Scholar
  13. Gamba M, Lapis AAM, Dupont J (2008) Supported ionic liquid enzymatic catalysis for the production of biodiesel. Adv Synth Catal 350:160–164.  https://doi.org/10.1002/adsc.200700303 CrossRefGoogle Scholar
  14. Gog A, Roman M, Toşa M, Paizs C, Irimie FD (2012) Biodiesel production using enzymatic transesterification—current state and perspectives. Renew. Energy. 39:10–16.  https://doi.org/10.1016/j.renene.2011.08.007 CrossRefGoogle Scholar
  15. Haigh KF, Vladisavljević GT, Reynolds JC, Nagy Z, Saha B (2014) Kinetics of the pre-treatment of used cooking oil using Novozyme 435 for biodiesel production. Chem Eng Res Des 92:713–719.  https://doi.org/10.1016/j.cherd.2014.01.006 CrossRefGoogle Scholar
  16. Hsu AF, Jones K, Marmer WN, Foglia TA (2001) Production of alkyl esters from tallow and grease using lipase immobilized in a phyllosilicate sol-gel. J Am Oil Chem Soc 78:585–588.  https://doi.org/10.1007/s11746-001-0308-x CrossRefGoogle Scholar
  17. Hsu A-F, Jones K, Foglia TA, Marmer WN (2002) Immobilized lipase-catalysed production of alkyl esters of restaurant grease as biodiesel. Biotechnol Appl Biochem 36:181–186.  https://doi.org/10.1042/BA20020007 CrossRefPubMedGoogle Scholar
  18. Iso M, Chen B, Eguchi M, Kudo T, Shrestha S (2001a) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B Enzym 16:53–58.  https://doi.org/10.1016/S1381-1177(01)00045-5 CrossRefGoogle Scholar
  19. Iso M, Chen B, Eguchi M, Kudo T, Shrestha S (2001b) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B Enzym 16:53–58.  https://doi.org/10.1016/S1381-1177(01)00045-5 CrossRefGoogle Scholar
  20. Kaieda M, Samukawa T, Kondo A, Fukuda H (2001a) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J Biosci Bioeng 91:12–15.  https://doi.org/10.1016/S1389-1723(01)80103-1 CrossRefPubMedGoogle Scholar
  21. Kaieda M, Samukawa T, Kondo A, Fukuda H (2001b) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J Biosci Bioeng 91:12–15.  https://doi.org/10.1016/S1389-1723(01)80103-1 CrossRefPubMedGoogle Scholar
  22. Khor GK, Sim JH, Kamaruddin AH, Uzir MH (2010) Thermodynamics and inhibition studies of lipozyme TL IM in biodiesel production via enzymatic transesterification. Bioresour Technol 101:6558–6561.  https://doi.org/10.1016/j.biortech.2010.03.047 CrossRefPubMedGoogle Scholar
  23. Kumari V, Shah S, Gupta MN (2007) Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energy Fuels 21:368–372CrossRefGoogle Scholar
  24. Li Q, Yan Y (2010) Production of biodiesel catalyzed by immobilized Pseudomonas cepacia lipase from Sapium sebiferum oil in micro-aqueous phase. Appl Energy 87:3148–3154.  https://doi.org/10.1016/j.apenergy.2010.02.032 CrossRefGoogle Scholar
  25. Li L, Du W, Liu D, Wang L, Li Z (2006) Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J Mol Catal B Enzym 43:58–62.  https://doi.org/10.1016/j.molcatb.2006.06.012 CrossRefGoogle Scholar
  26. Li S-F, Fan Y-H, Hu R-F, Wu W-T (2011) Pseudomonas cepacia lipase immobilized onto the electrospun PAN nanofibrous membranes for biodiesel production from soybean oil. J Mol Catal B Enzym 72:40–45.  https://doi.org/10.1016/j.molcatb.2011.04.022 CrossRefGoogle Scholar
  27. Liu Y, Yan Y, Hu F, Yao A, Wang Z, Wei F (2010a) Transesterification for biodiesel production catalyzed by combined lipases: optimization and kinetics. AIChE J 56:1659–1665.  https://doi.org/10.1002/aic CrossRefGoogle Scholar
  28. Liu Y, Tan H, Zhang X, Yan Y, Hameed BH (2010b) Effect of monohydric alcohols on enzymatic transesterification for biodiesel production. Chem Eng J 157:223–229.  https://doi.org/10.1016/j.cej.2009.12.024 CrossRefGoogle Scholar
  29. Lopresto CG, Naccarato S, Albo L, De Paola MG, Chakraborty S, Curcio S, Calabrò V (2015) Enzymatic transesterification of waste vegetable oil to produce biodiesel. Ecotoxicol Environ Saf.  https://doi.org/10.1016/j.ecoenv.2015.03.028 CrossRefPubMedGoogle Scholar
  30. Marchetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sustain Energy Rev 11:1300–1311.  https://doi.org/10.1016/j.rser.2005.08.006 CrossRefGoogle Scholar
  31. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463CrossRefGoogle Scholar
  32. Nelson LA, Foglia TA, Marmer WN (1996a) Lipase-catalyzed production of biodiesel. J Am Oil Chem Soc 73:1191–1195.  https://doi.org/10.1007/BF02523383 CrossRefGoogle Scholar
  33. Nelson LA, Foglia TA, Marmer WN (1996b) Lipase-catalyzed production of biodiesel. J Am Oil Chem Soc 73:1191–1195.  https://doi.org/10.1007/BF02523383 CrossRefGoogle Scholar
  34. Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96:769–777.  https://doi.org/10.1016/j.biortech.2004.05.029 CrossRefGoogle Scholar
  35. Pazouki M, Zamani F, Zamzamian AH, Fahar M, Najafpour G (2010) Esterification of free fatty acids by Rhizopus oryzae as cell-catalyzed from used cooking oil for biodiesel production. World Appl Sci J 8:719–724Google Scholar
  36. Salis A, Pinna M, Monduzzi M, Solinas V (2005a) Biodiesel production from triolein and short chain alcohols through biocatalysis. J Biotechnol 119:291–299.  https://doi.org/10.1016/j.jbiotec.2005.04.009 CrossRefPubMedGoogle Scholar
  37. Salis A, Pinna M, Monduzzi M, Solinas V (2005b) Biodiesel production from triolein and short chain alcohols through biocatalysis. J Biotechnol 119:291–299.  https://doi.org/10.1016/j.jbiotec.2005.04.009 CrossRefPubMedGoogle Scholar
  38. Sánchez DA, Tonetto GM, Ferreira ML (2018) Burkholderia cepacia lipase: a versatile catalyst in synthesis reactions. Biotechnol Bioeng 115:6–24.  https://doi.org/10.1002/bit.26458 CrossRefPubMedGoogle Scholar
  39. Shah S, Gupta MN (2007a) Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem 42:409–414.  https://doi.org/10.1016/j.procbio.2006.09.024 CrossRefGoogle Scholar
  40. Shah S, Gupta MN (2007b) Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem 42:409–414.  https://doi.org/10.1016/j.procbio.2006.09.024 CrossRefGoogle Scholar
  41. Shimada Y, Watanabe Y, Sugihara A, Tominaga Y (2002a) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B Enzym 17:133–142.  https://doi.org/10.1016/S1381-1177(02)00020-6 CrossRefGoogle Scholar
  42. Shimada Y, Watanabe Y, Sugihara A, Tominaga Y (2002b) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B Enzym 17:133–142.  https://doi.org/10.1016/S1381-1177(02)00020-6 CrossRefGoogle Scholar
  43. Soumanou MM, Bornscheuer UT (2003a) Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb Technol 33:97–103.  https://doi.org/10.1016/S0141-0229(03)00090-5 CrossRefGoogle Scholar
  44. Soumanou MM, Bornscheuer UT (2003b) Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb Technol 33:97–103.  https://doi.org/10.1016/S0141-0229(03)00090-5 CrossRefGoogle Scholar
  45. Tan T, Lu J, Nie K, Deng L, Wang F (2010) Biodiesel production with immobilized lipase: a review. Biotechnol Adv 28:628–634.  https://doi.org/10.1016/j.biotechadv.2010.05.012 CrossRefPubMedGoogle Scholar
  46. ul ain Rana Q, Rehman MLU, Irfan M, Ahmed S, Hasan F, Shah AA, Khan S, Badshah M (2019) Lipolytic bacterial strains mediated transesterification of non-edible plant oils for generation of high quality biodiesel. J Bioscci Bioeng 127:609–617CrossRefGoogle Scholar
  47. Wang Y, Shen X, Li Z, Li X, Wang F, Nie X, Jiang J (2010) Immobilized recombinant Rhizopus oryzae lipase for the production of biodiesel in solvent free system. J Mol Catal B Enzym 67:45–51.  https://doi.org/10.1016/j.molcatb.2010.07.004 CrossRefGoogle Scholar
  48. Winayanuwattikun P, Kaewpiboon C, Piriyakananon K, Tantong S, Thakernkarnkit W, Chulalaksananukul W, Yongvanich T (2008) Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand. Biomass Bioenerg 32:1279–1286.  https://doi.org/10.1016/j.biombioe.2008.03.006 CrossRefGoogle Scholar
  49. Xie W, Ma N (2010) Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenerg 34:890–896.  https://doi.org/10.1016/j.biombioe.2010.01.034 CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Department of Mechanical, Energy and Management Engineering (DIMEG)University of CalabriaArcavacata di RendeItaly
  2. 2.Laboratory of Transport Phenomena and Biotechnology, Department of Informatics, Modeling, Electronics and Systems Engineering (DIMES)University of CalabriaArcavacata di RendeItaly

Personalised recommendations