3 Biotech

, 9:442 | Cite as

Progress toward sourcing plants for new bioconjugation tools: a screening evaluation of a model peptide ligase using a synthetic precursor

  • Tunjung MahatmantoEmail author
  • Isyatul Azizah
  • Alex Buchberger
  • Nicholas Stephanopoulos
Original Article


In the present study, leaves from 39 phylogenetically distant plant species were sampled and screened for asparaginyl endopeptidase ligase activity using mass spectrometry to test the generality of peptide ligases in plants. A modified version of the sunflower trypsin inhibitor-1 precursor was used as the substrate for reactions with leaf crude extracts and protein fractions. Masses consistent with products of asparaginyl endopeptidase activities that cleave and ligate the substrate into cyclic peptide following the reactions were detected in 8 plants: Nerium oleander and Thevetia peruviana of the family Apocynaceae; Bauhinia variegata, Dermatophyllum secundiflorum, Pithecellobium flexicaule, and Prosopis chilensis of the family Fabaceae; Morus alba of the family Moraceae; and Citrus aurantium of the family Rutaceae. This screening result represents a 20% hit rate for finding asparaginyl endopeptidase ligase activity from the arbitrary plants sampled. Analysis following a 2-h reaction of the substrate with the crude extract of D. secundiflorum leaves showed that the yield of cyclic peptide remained stable around 0.5 ± 0.1% of the substrate over the course of the reaction.


Plant peptide ligase Asparaginyl endopeptidase Cyclic peptide Protein modification Bioconjugation tool 



We thank Rizal F. Hariadi (Arizona State University), Edward K. Gilding (The University of Queensland) and Mark A. Jackson (The University of Queensland) for the helpful discussion, Gabrielle R. Hirneise (Arizona State University) for help with the manuscript, and the Biodesign Institute, Arizona State University, for access to their mass spectrometry facility.

Author contributions

Conceived and designed the experiments: Tunjung Mahatmanto, Isyatul Azizah. Performed the experiments: Tunjung Mahatmanto, Isyatul Azizah, Alex Buchberger. Analyzed the data: Tunjung Mahatmanto, Isyatul Azizah. Contributed reagents/materials/analysis tools: Nicholas Stephanopoulos. Wrote the paper: Tunjung Mahatmanto, Isyatul Azizah, Nicholas Stephanopoulos.


This study was supported by the Arizona State University Start-Up Funds to Rizal F. Hariadi and Nicholas Stephanopoulos.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Antos JM, Truttmann MC, Ploegh HL (2016) Recent advances in sortase-catalyzed ligation methodology. Curr Opin Struct Biol 38:111–118. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arnison PG, Bibb MJ, Bierbaum G et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–160. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barber CJS, Pujara PT, Reed DW et al (2013) The two-step biosynthesis of cyclic peptides from linear precursors in a member of the plant family Caryophyllaceae involves cyclization by a serine protease-like enzyme. J Biol Chem 288:12500–12510. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bergmann M, Fraenkel-Conrat H (1937) The role of specificity in the enzymatic synthesis of proteins: syntheses with intracellular enzymes. J Biol Chem 119:707–720Google Scholar
  5. Bernath-Levin K, Nelson C, Elliott AG et al (2015) Peptide macrocyclization by a bifunctional endoprotease. Chem Biol 22:571–582. CrossRefPubMedGoogle Scholar
  6. Burman R, Yeshak MY, Larsson S et al (2015) Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae. Front Plant Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Craik DJ, Daly NL, Bond T, Waine C (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294:1327–1336. CrossRefPubMedGoogle Scholar
  8. Dall E, Brandstetter H (2012) Activation of legumain involves proteolytic and conformational events, resulting in a context-and substrate-dependent activity profile. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:24–31. CrossRefPubMedGoogle Scholar
  9. Dall E, Brandstetter H (2013) Mechanistic and structural studies on legumain explain its zymogenicity, distinct activation pathways, and regulation. Proc Natl Acad Sci 110:10940–10945. CrossRefPubMedGoogle Scholar
  10. Dall E, Brandstetter H (2016) Structure and function of legumain in health and disease. Biochimie 122:126–150. CrossRefPubMedGoogle Scholar
  11. Dall E, Fegg JC, Briza P, Brandstetter H (2015) Structure and mechanism of an aspartimide-dependent peptide ligase in human legumain. Angew Chemie Int Ed 54:2917–2921. CrossRefGoogle Scholar
  12. Elliott AG, Delay C, Liu H et al (2014) Evolutionary origins of a bioactive peptide buried within preproalbumin. Plant Cell 26:981–995. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Falciani C, Lozzi L, Pini A, Bracci L (2005) Bioactive peptides from libraries. Chem Biol 12:417–426. CrossRefPubMedGoogle Scholar
  14. Gilding EK, Jackson MA, Poth AG et al (2016) Gene coevolution and regulation lock cyclic plant defence peptides to their targets. New Phytol 210:717–730. CrossRefPubMedGoogle Scholar
  15. Harris KS, Durek T, Kaas Q et al (2015) Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nat Commun 6:10199. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Haywood J, Schmidberger JW, James AM et al (2018) Structural basis of ribosomal peptide macrocyclization in plants. Elife 7:e32955. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jackson MA, Gilding EK, Shafee T et al (2018) Molecular basis for the production of cyclic peptides by plant asparaginyl endopeptidases. Nat Commun 9:2411. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jackson MA, Yap K, Poth AG et al (2019) Rapid and scalable plant-based production of a potent plasmin inhibitor peptide. Front Plant Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Krall N, Da Cruz FP, Boutureira O, Bernardes GJL (2016) Site-selective protein-modification chemistry for basic biology and drug development. Nat Chem 8:103–113. CrossRefPubMedGoogle Scholar
  20. Kumaran S, Datta D, Roy RP (2000) An enigmatic peptide ligation reaction: protease-catalyzed oligomerization of a native protein segment in neat aqueous solution. Protein Sci 9:734–741. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lee J, Mcintosh J, Hathaway BJ, Schmidt EW (2009) Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates. J Am Chem Soc 131:2122–2124. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lotze J, Reinhardt U, Seitz O, Beck-Sickinger AG (2016) Peptide-tags for site-specific protein labelling in vitro and in vivo. Mol BioSyst 12:1731–1745. CrossRefPubMedGoogle Scholar
  23. Luo H, Hong SY, Sgambelluri RM et al (2014) Peptide macrocyclization catalyzed by a prolyl oligopeptidase involved in α-amanitin biosynthesis. Chem Biol 21:1610–1617. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Mahatmanto T (2015) Seed biopharmaceutical cyclic peptides: from discovery to applications. Biopolymers 104:804–814. CrossRefPubMedGoogle Scholar
  25. Mahatmanto T, Poth AG, Mylne JS, Craik DJ (2014) A comparative study of extraction methods reveals preferred solvents for cystine knot peptide isolation from Momordica cochinchinensis seeds. Fitoterapia 95:22–33. CrossRefPubMedGoogle Scholar
  26. Mahatmanto T, Mylne JS, Poth AG et al (2015) The evolution of Momordica cyclic peptides. Mol Biol Evol 32:392–405. CrossRefPubMedGoogle Scholar
  27. Mazmanian SK, Liu G, Ton-That H, Schneewind O (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:760–763. CrossRefPubMedGoogle Scholar
  28. Mylne JS, Colgrave ML, Daly NL et al (2011) Albumins and their processing machinery are hijacked for cyclic peptides in sunflower. Nat Chem Biol 7:257–259. CrossRefPubMedGoogle Scholar
  29. Nguyen GKT, Wang S, Qiu Y et al (2014) Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat Chem Biol 10:732–738. CrossRefPubMedGoogle Scholar
  30. Nguyen GKT, Qiu Y, Cao Y et al (2016) Butelase-mediated cyclization and ligation of peptides and proteins. Nat Protoc 11:1977–1988. CrossRefPubMedGoogle Scholar
  31. Poon S, Harris KS, Jackson MA et al (2018) Co-expression of a cyclizing asparaginyl endopeptidase enables efficient production of cyclic peptides in planta. J Exp Bot 69:633–641. CrossRefPubMedGoogle Scholar
  32. Siodłak D (2015) α, β-Dehydroamino acids in naturally occurring peptides. Amino Acids 47:1–17. CrossRefPubMedGoogle Scholar
  33. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chemie Int Ed 48:6974–6998. CrossRefGoogle Scholar
  34. Spicer CD, Davis BG (2014) Selective chemical protein modification. Nat Commun 5:4740. CrossRefPubMedGoogle Scholar
  35. The Plant List (2010). In: Version 1. Accessed 8 Jun 2018
  36. Trads JB, Tørring T, Gothelf KV (2017) Site-selective conjugation of native proteins with DNA. Acc Chem Res 50:1367–1374. CrossRefPubMedGoogle Scholar
  37. Walsh CT, Garneau-Tsodikova S, Gatto GJ (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chemie Int Ed 44:7342–7372. CrossRefGoogle Scholar
  38. Wang CKL, Kaas Q, Chiche L, Craik DJ (2008) CyBase: a database of cyclic protein sequences and structures, with applications in protein discovery and engineering. Nucleic Acids Res 36:D206–D210. CrossRefPubMedGoogle Scholar
  39. Wingfield PT (2016) Protein precipitation using ammonium sulfate. Curr Protoc Protein Sci 84:A.3F.1–A.3F.9.
  40. Witus LS, Francis MB (2011) Using synthetically modified proteins to make new materials. Acc Chem Res 44:774–783. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yang R, Wong YH, Nguyen GKT et al (2017) Engineering a catalytically efficient recombinant protein ligase. J Am Chem Soc 139:5351–5358. CrossRefPubMedGoogle Scholar
  42. Zauner FB, Dall E, Regl C et al (2018a) Crystal structure of plant legumain reveals a unique two-chain state with pH-dependent activity regulation. Plant Cell 30:686–699. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zauner FB, Elsässer B, Dall E et al (2018b) Structural analyses of Arabidopsis thaliana legumain γ reveal differential recognition and processing of proteolysis and ligation substrates. J Biol Chem 293:8934–8946. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhao L, Hua T, Crowley C et al (2014) Structural analysis of asparaginyl endopeptidase reveals the activation mechanism and a reversible intermediate maturation stage. Cell Res 24:344–358. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Department of Agricultural Product Technology, Faculty of Agricultural TechnologyUniversitas BrawijayaMalangIndonesia
  2. 2.Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State UniversityTempeUSA
  3. 3.Department of Biology, Faculty of Mathematics and Life SciencesUniversitas BrawijayaMalangIndonesia
  4. 4.School of Molecular SciencesArizona State UniversityTempeUSA
  5. 5.Jurusan Teknologi Hasil Pertanian, Fakultas Teknologi PertanianUniversitas BrawijayaMalangIndonesia

Personalised recommendations