3 Biotech

, 9:424 | Cite as

Ligninolytic behavior of the white-rot fungus Stereum ostrea under influence of culture conditions, inducers and chlorpyrifos

  • B. S. Shanthi Kumari
  • K. Praveen
  • K. Y. Usha
  • Kanderi Dileep Kumar
  • G. Praveen Kumar Reddy
  • B. Rajasekhar ReddyEmail author
Original Article


The production of three ligninolytic enzymes, laccase (LAC), manganese peroxidase (MnP) and lignin peroxidase (LiP) by the white-rot fungus, Stereum ostrea, was significantly more in Koroljova liquid medium in the presence of chlorpyrifos under shaking conditions than under stationary conditions. These enzymes were secreted into the broth to the extent of 214.37, 82.75 and 8.05 U/ml under influence of chlorpyrifos on 10th day of incubation in comparison with 138.06, 51.85 and 6.44 U/ml, respectively, under similar conditions in control. Maximum production of LAC, MnP and LiP on liquid medium with/without chlorpyrifos under stationary conditions did not exceed 80–85, 33–40, 0.6–0.7 U/ml, respectively. Among lignosulfonic acid, veratryl alcohol (VA), gallic acid (GA) and tannic acid tested, GA induced maximum production of LAC (300.53 U/ml) and MnP (181.66 U/ml) after 10 days of growth in the presence of chlorpyriphos, while maximum LiP (1.134 U/ml) was produced when grown with the inducer VA during this period. Our data suggest that chlorpyrifos and inducers interacted positively in producing higher amounts of the ligninolytic enzymes in S. ostrea.


Chlorpyrifos Inducers LAC Ligninolytic enzymes LiP MnP Stereum ostrea White-rot fungi 



This work was supported with grants from a major research Project [F.No. 42-476/2013(SR) dated 22-03-2013], UGC, New Delhi and the assistance in the form of project fellow in the project to Miss. B.S. Shanthi Kumari is duly acknowledged.

Compliance with ethical standards

Competing interest

Among the authors, there is no competing interest in the publication of the manuscript.

Supplementary material

13205_2019_1955_MOESM1_ESM.docx (478 kb)
Photo 1 Growth of S. ostrea under stationary conditions on 10th incubation. Photo 2 Growth of S. ostrea under shaking conditions on 10th day of incubation (DOCX 477 kb)


  1. Abdel-Raheem AM, Ali EH (2004) Lignocellulolytic enzyme production by aquatic hyphomycetes species isolated from the Nile’s delta region. Mycopathologia 157(3):277–286CrossRefGoogle Scholar
  2. Aysal P, Tiryaki O, Tuncbilek A (2004) 14C-Dimethoate residues in tomatoes and tomato products. Bull Environ Contam Toxicol 73:351–357. CrossRefPubMedGoogle Scholar
  3. Barbosa AM, Dekker RFH, St Hardy GE (1996) Veratryl alcohol as an inducer of laccase by an ascomycete, Botryosphaeria sp., when screened on the polymeric dye poly R-478. Lett Appl Microbiol 23:93–96. CrossRefGoogle Scholar
  4. Bastos A, Magan N (2009) Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int Biodeterior Biodegrad 63:389–394. CrossRefGoogle Scholar
  5. Bonnen AM, Anton LH, Orth AB (1994) Lignin-degrading enzymes of the commercial button mushroom, Agaricus bisporus. Appl Environ Microbiol 60:960–965PubMedPubMedCentralGoogle Scholar
  6. Bozell JJ, Petersen GR (2010) Technology development for the production of bio based products from biorefinery carbohydrates—the US Department of Energy’s ‘Top 10’ revisited. Green Chem 12:539–554. CrossRefGoogle Scholar
  7. Brandt A, Chen L, van Dongen BE, Welton T, Hallett JP (2015) Structural changes in lignins isolated using an acidic ionic liquid water mix-ture. Green Chem 17:5019–5034. CrossRefGoogle Scholar
  8. Carter A (2000) How pesticides get into water—and proposed reduction measures. Pestic Outlook 11:149–156. CrossRefGoogle Scholar
  9. Casale WL, Hart LP (1986) Influence of four herbicides on carpogenic germination and apothecium development of Sclerotinia sclerotiorum. Phytopathology 76:980–984CrossRefGoogle Scholar
  10. Cejudo-Espinosa E, Ramos-Valdivia AC, Esparza-García F, Moreno-Casasola P, Rodriguez-Vazquez R (2009) Short-term accumulation of atrazine by three plants from a wet land model system. Arch Environ Contam Toxicol 56:201–208. CrossRefPubMedGoogle Scholar
  11. Chandra S, Mahindrakar AN, Shinde L (2010) Determination of cypermethrin and chlorpyrifos in vegetables by GC-ECD. Int J ChemTech Res 2:908–911Google Scholar
  12. Chatel G, Rogers RD (2013) Review: oxidation of lignin using ionic liquids—an innovative strategy to produce renewable chemicals. ACS Sustain Chem Eng 2:322–339. CrossRefGoogle Scholar
  13. Chishti Z, Hussain S, Arshad KR, Khalid A, Arshad M (2013) Microbial degradation of chlorpyrifos in liquid media and soil. J Environ Manag 114:372–380. CrossRefGoogle Scholar
  14. Coelho-Moreira JDS, de Oliveira AL, de Souza CGM, Bracht A, Peralta RM (2010) Effect of the herbicides bentazon and diuron on the production of ligninolytic enzymes by Ganoderma lucidum. Int Biodeterior Biodegrad 64:156–161. CrossRefGoogle Scholar
  15. Coelho-Moreira JDS, Bracht A, Silva Da, de Souza AC, Ferreira Oliveira R, De Sá-Nakanishi AB, Marques Giatti, de Souza C, Peralta RM (2013) Degradation of diuron by Phanerochaete chrysosporium: role of ligninolytic enzymes and cytochrome p450. BioMed Res Intl 2013:9. (Article ID 251354) CrossRefGoogle Scholar
  16. Cupul WC, Abarca GH, Vázquez RR, Salmones D, Hernández RG, Gutiérrez EA (2014) Response of ligninolytic macrofungi to the herbicide atrazine: dose–response bioassays. Rev Argent Microbiol 46:348–357. CrossRefPubMedGoogle Scholar
  17. Das N, Sengupta S, Mukerjee M (1997) Importance of laccase in vegetative growth of Pleurotusflorida. Appl Environ Microbiol 63:4120–4122PubMedPubMedCentralGoogle Scholar
  18. Das L, Kolar P, Sharma-Shivappa R (2012) Heterogeneous catalytic oxidation of lignin into value-added chemicals. Biofuels 3:155–166. CrossRefGoogle Scholar
  19. de Sousa Fragoeiro SI (2005) Use of fungi in bioremediation of pesticides. PhD thesis, Cranfield UniversityGoogle Scholar
  20. Dutta M, Sardar D, Pal R, Kole RK (2010) Effect of chlorpyrifos on microbial biomass and activities in tropical clay loam soil. Environ Monit Assess 160:385–391. CrossRefPubMedGoogle Scholar
  21. Eggert C, Temp U, Eriksson KE (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158PubMedPubMedCentralGoogle Scholar
  22. El-Ghany A, Masmal IA (2016) Fungal biodegradation of organophosphorus insecticides and their impact on soil microbial population. J Plant Pathol Microbiol 7(5):349. CrossRefGoogle Scholar
  23. Fang H, Yu YL, Wang X, Shan M, Wu XM, Yu JQ (2006) Dissipation of chlorpyrifos in pakchoi-vegetated soil in a greenhouse. J Environ Sci 18:760–764Google Scholar
  24. Fischer D, Moriarty T (2011) Pesticide risk assessment for pollinators: summary of a SETAC pellston workshop. Society of Environmental Toxicology and Chemistry, Pensacola, pp 1–43Google Scholar
  25. Ganash MA, Abdel Ghany TM, Reyad AM (2016) Pleurotus ostreatus as a biodegradator for organophosphorus insecticide—malathion. J Environ Anal Toxicol 6:369. CrossRefGoogle Scholar
  26. Giesy JP, Solomon KR, Mackay D, Cutler GC, Giddings JM, Mackay D, Moore DRJ, Purdy J, Williams WM (2014) Ecological risk assessment for chlorpyrifos in terrestrial and aquatic systems in the United States—overview and conclusions. Rev Environ Contam Toxicol 231:1–12. CrossRefPubMedGoogle Scholar
  27. Guisado GL, Lopez MJ, Vargas-Garcia MC, Suarez-Estrella F, Moreno J (2012) Pseudallescheria angusta, a ligninolytic microorganism for wood fibres biomodification. Bioresource 7:464–474Google Scholar
  28. Guliy OI, Ignatov OV, Makarov OE, Ignatov VV (2003) Determination of organophosphorus aromatic nitro insecticides and p-nitrophenol by microbial-cell respiratory activity. Biosens Bioelectron 18:1005–1013. CrossRefPubMedGoogle Scholar
  29. Howard RL, Abotsi E, Rensburg ELJV, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619. CrossRefGoogle Scholar
  30. Kale SP, Carvalho PF, Raghu K, Sherkhane PD, Pandit GG, Mohan Rao A, Mukherjee PK (1999) Studies on degradation of 14C-chlorpyrifos in the marine environment. Chemosphere 39:969–976. CrossRefPubMedGoogle Scholar
  31. Kaur H, Kapoor S, Kaur G (2016) Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane. Environ Monit Assess 188(10):588. CrossRefPubMedGoogle Scholar
  32. Koroljova-Skorobogatko OV, Stepanova EV, Gavrilova VP, Morozova OV, Lubimova NV, Dzchafarova AN, Jaropolov AI, Makower A (1998) Purification and characterization of the constitutive form of laccase from the basidiomycete Coriolus hirsutus and effect of inducers on laccase synthesis. Biotechnol Appl Biochem 28:47–54. CrossRefGoogle Scholar
  33. Lal R, Lal S (eds) (1988) Pesticides and nitrogen cycle, vol I–III. CRC Press, Boca RatonGoogle Scholar
  34. Lo SC, Ho YS, Buswell JA (2001) Effect of phenolic monomers on the production of laccases by the edible mushroom Pleurotus sajor-caju, and partial characterization of a major laccase component. Mycologia 93:413–421. CrossRefGoogle Scholar
  35. Lowry OM, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin Phenol reagent. J Biol Chem 193:265–275PubMedPubMedCentralGoogle Scholar
  36. Mallick K, Bharati K, Banerji A, Shakil N, Sethunathan N (1999) Bacterial degradation of chlorpyrifos in pure cultures and in soil. Bull Environ Contam Toxicol 62:48–54. CrossRefPubMedGoogle Scholar
  37. Maya K, Singh RS, Upadhyay SN, Dubey SK (2011) Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP. Process Biochem 46:2130–2136. CrossRefGoogle Scholar
  38. Michereff-Filho M, Guedes R, Della-Lucia T, Michereff M, Cruz I (2004) Non-target impact of chlorpyrifos on soil arthropods associated with no-tillage cornfields in Brazil. Int J Pest Manag 50:91–99. CrossRefGoogle Scholar
  39. Muhammad F, Akhtar M, Rahman Z, Farooq H, Khaliq T, Anwar M (2010) Multi-residue determination of pesticides in the meat of cattle in Faisalabad–Pakistan. Egypt Acad J Biol Sci 2:19–28. CrossRefGoogle Scholar
  40. Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, van Engelsdorp D, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS ONE 5(3):e9754. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Munir N, Asgher M, Tahir IM, Riaz M, Bilal M, Shah SMA (2015) Utilization of agro-wastes for production of ligninolytic enzymes in liquid state fermentation by Phanerochaete chrysosporium-IBL-03. IJCBS 7:9–14Google Scholar
  42. Niladevi KN, Prema P (2006) Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolorization. Biores Technol 99(11):4583–4589. CrossRefGoogle Scholar
  43. Nunez-Esteve A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65(3):335–352. CrossRefGoogle Scholar
  44. Palma P, Palma V, Fernandes R, Soares A, Barbosa I (2008) Acute toxicity of atrazine, endosulfansulphate and chlorpyrifos to Vibrio fischeri, Thamnocephalus platyurus and Daphnia magna, relative to their concentrations in surface waters from the Alentejo region of Portugal. Bull Environ Contam Toxicol 81(5):485–489. CrossRefPubMedGoogle Scholar
  45. Quintero JC, Moreira MT, Feijoo G, Lema JM (2008) Screening of white rot fungal species for their capacity to degrade lindane and other isomers of hexachlorocyclohexane HCH. Cienc Investig Agrar 35(2):159–167. CrossRefGoogle Scholar
  46. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mienlenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for the biofuels and biomaterials. Science 311(5760):484–489. CrossRefPubMedGoogle Scholar
  47. Rahman NHA, Rahman NAA, Surainiabdaziz M, Hassan M (2013) Production of ligninolytic enzymes by newly isolated bacteria from palm oil plantation soils. Bioresource 8(4):6136–6150Google Scholar
  48. Rajakumar R, Umamaheswari G (2014) Studies on biodegradation of pesticides by white rot fungi. Int J Sci Educ Res 2(2):42–48Google Scholar
  49. Rouches E, Herpoël-Gimbert I, Steyer JP (2016) Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sustain Energy Rev 59:179–198. CrossRefGoogle Scholar
  50. Sandahl JF, Baldwin DH, Jenkins JJ, Scholz NL (2004) Odor-evoked field potentials as indicators of sub lethal neurotoxicity in juvenile coho salmon (Oncorhynchuskisutch) exposed to copper, chlorpyrifos, or esfenvalerate. Can J Fish Aquat Sci 61:404–413CrossRefGoogle Scholar
  51. Sapozhnikova Y, Bawardi O, Schlenk D (2004) Pesticides and PCBs in sediments and fish from the Salton Sea, California, USA. Chemosphere 55(6):797–809. CrossRefPubMedGoogle Scholar
  52. Selvaraj B, Sanjeevirayar A, Rajendran A (2015) Laccase production using mixed substrates containing lignocellulosic materials by Pleurotus ostreatus in submerged liquid culture. Int J ChemTech Res 7:355–368Google Scholar
  53. Shanthi Kumari BS (2014) Influence of chlorpyrifos on secretion of ligninolytic metallo enzymes by white rot fungus—Stereum ostrea. MPhil dissertation, Sri Krishnadevaraya University, AnanatapuramuGoogle Scholar
  54. Shanthi Kumari BS, Dileep Kumar K, Ramya A, Rajasekhar Reddy B (2018) Secretion of ligninolytic enzymes by the white rot fungus Stereum ostrea on saw dust under the influence of chlorpyrifos. IJCRT 6:19–28Google Scholar
  55. Singh D, Chen S (2008) The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin degrading enzymes. Appl Microbiol Biotechnol 81(3):399–417. CrossRefPubMedGoogle Scholar
  56. Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471. CrossRefPubMedGoogle Scholar
  57. Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249. CrossRefGoogle Scholar
  58. Tuzmen N, Candan N, Kaya E, Demiryas N (2008) Biochemical effects of chlorpyrifos and deltamethrin on altered antioxidative defense mechanism and lipid peroxidation in rat liver. Cell Biochem Funct 26(1):119–124. CrossRefPubMedGoogle Scholar
  59. Usha KY, Praveen K, Reddy BR (2014) Enhanced production of ligninolytic enzymes by a mushroom Stereum ostrea. Bio Med Res Int 5:9. CrossRefGoogle Scholar
  60. Valle JS, Van den Berghe LPS, Ollveira ACC, Taveres TFF, Linde GA (2015) Effect of different compounds on the induction of laccase by Agaricus blazei. Genet Mol Res 14(4):15882–15891. CrossRefPubMedGoogle Scholar
  61. Van den Brink PJ, Van Donk E, Gylstra R, Crum SJH, Brock TCM (1995) Effects of chronic low concentrations of the pesticides chlorpyrifos and atrazine in indoor fresh water microcosms. Chemosphere 31(5):3181–3200. CrossRefGoogle Scholar
  62. Viswanath B, Subhosh Chandra M, Pallavi H, Reddy BR (2008) Screening and assessment of laccase—producing fungi isolated from different environment samples. Afr J Biotechnol 7(8):1129–1133Google Scholar
  63. Xue N, Xu X, Jin Z (2005) Screening 31 endocrine-disrupting pesticides in water and surface sediment samples from Beijing Guanting reservoir. Chemosphere 61:1594–1606CrossRefGoogle Scholar
  64. Yang L, Zhao YH, Zhang BX, Yang CH, Zhang X (2005) Isolation and characterization of a chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett. 251:67–73. CrossRefPubMedGoogle Scholar
  65. Yu YL, Fang H, Wang X, Wu XM, Shan M, Yu JQ (2006) Characterization of a fungal strain capable of degrading chlorpyrifos and its use in detoxification of the insecticide on vegetables. Biodegra 17:487–494. CrossRefGoogle Scholar
  66. Zhou XW, Su KQ, Zhang YM (2012) Applied modern biotechnology for cultivation of Ganoderma and development of their products. Appl Microbiol Biotechnol. 93:941–963CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Department of MicrobiologySri Krishnadevaraya UniversityAnantapuramuIndia

Personalised recommendations