Advertisement

3 Biotech

, 9:395 | Cite as

Deciphering hydrogen peroxide-induced signalling towards stress tolerance in plants

  • Jackson Khedia
  • Parinita Agarwal
  • Pradeep K. AgarwalEmail author
Review Article
  • 3 Downloads

Abstract

Plants encounter a variety of adverse environmental conditions, such as high salinity, drought, extreme heat/cold and heavy metals contamination (abiotic stress) or attack of various pathogens (biotic stress). These detrimental environmental factors enhanced the ROS production such as singlet oxygen (1O2), superoxide (O 2 •− ), hydrogen peroxide (H2O2) and hydroxyl radicals (OH). ROS are highly reactive and directly target several cellular molecules and metabolites, which lead to severe cellular dysfunction. Plants respond to oxidative damages by activating antioxidant machinery to trigger signalling cascades for stress tolerance. H2O2 signalling balances the plant metabolism through cross-talk with other signals and plant hormones during growth, development and stress responses. H2O2 facilitates the regulation of different stress-responsive transcription factors (TFs) including NAC, Zinc finger, WRKY, ERF, MYB, DREB and bZIP as both upstream and downstream events during stress signalling. The present review focuses on the biological synthesis of the H2O2 and its effect on the upregulation of kinase genes and stress related TFs for imparting stress tolerance.

Keywords

Reactive oxygen species Hydrogen peroxide Oxidative stress Transcription factor Stress signalling Phytohormone 

Notes

Acknowledgements

CSIR-CSMCRI Communication No.-PRIS014. The financial assistance from the CSIR-SRF, DST-WOS-A and CSIR, New Delhi, India is duly acknowledged.

Compliance with ethical standards

Conflict of interest

No conflict of interests exist.

References

  1. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311(5757):91–94PubMedCrossRefGoogle Scholar
  2. Agarwal P, Patel K, Agarwal PK (2018) Ectopic expression of JcWRKY confers enhanced resistance in transgenic tobacco against Macrophomina phaseolina. DNA Cell Biol 37(4):298–307PubMedCrossRefGoogle Scholar
  3. Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233CrossRefGoogle Scholar
  4. Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92(6):773–784PubMedCrossRefGoogle Scholar
  5. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  6. Asai S, Yoshioka H (2008) The role of radical burst via MAPK signaling in plant immunity. Plant Signal Behav 3(11):920–922PubMedPubMedCentralCrossRefGoogle Scholar
  7. Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Köhler B, Mueller-Roeber B (2010a) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62(2):250–264PubMedCrossRefGoogle Scholar
  8. Balazadeh S, Wu A, Mueller-Roeber B (2010b) Salt-triggered expression of the ANAC092-dependent senescence regulon in Arabidopsis thaliana. Plant Signal Behav 5(6):733–735PubMedPubMedCentralCrossRefGoogle Scholar
  9. Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor MI, Xue GP, Mueller-Roeber B (2011) ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant 4(2):346–360PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barcelo AR (2005) Xylem parenchyma cells deliver the H2O2 necessary for lignification in differentiating xylem vessels. Planta 220(5):747–756CrossRefGoogle Scholar
  11. Bartoli CG, Gómez F, Martínez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J Exp Bot 55:1663–1669PubMedCrossRefGoogle Scholar
  12. Becana M, Morán JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201(1):137–147CrossRefGoogle Scholar
  13. Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63(7):2667–2679PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. BBA Biomembr 5:1596–1604Google Scholar
  15. Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. BBA Biomembr 1758(8):994–1003CrossRefGoogle Scholar
  16. Borgohain P, Saha B, Agrahari R, Chowardhara B, Sahoo S, van der Vyver C, Panda SK (2019) SlNAC2 overexpression in Arabidopsis results in enhanced abiotic stress tolerance with alteration in glutathione metabolism. Protoplasma 27:1–13Google Scholar
  17. Camejo D, del Carmen Romero-Puertas M, Rodríguez-Serrano M, Sandalio LM, Lázaro JJ, Jiménez A, Sevilla F (2013) Salinity-induced changes in S-nitrosylation of pea mitochondrial proteins. J Proteomics 79:87–99PubMedCrossRefGoogle Scholar
  18. Chen L, Zhang L, Yu D (2010) Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Mol Plant Microbe Interact 23(5):558–565PubMedCrossRefGoogle Scholar
  19. Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217(1):67–75PubMedCrossRefGoogle Scholar
  20. Corpas FJ, Barroso JB, Luis A (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150PubMedCrossRefGoogle Scholar
  21. Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139(2):847–856PubMedPubMedCentralCrossRefGoogle Scholar
  22. De Clercq I, Vermeirssen V, Van Aken O, Vandepoele K, Murcha MW, Law SR, Inzé A, Ng S, Ivanova A, Rombaut D, Van De Cotte B (2013) The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 25:3472–3490PubMedPubMedCentralCrossRefGoogle Scholar
  23. Del Río LA (2011) Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 506:1–11PubMedCrossRefGoogle Scholar
  24. Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci 98(23):13454–13459PubMedCrossRefGoogle Scholar
  25. Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55(395):205–212PubMedCrossRefGoogle Scholar
  26. Dietz KJ (2014) Redox regulation of transcription factors in plant stress acclimation and development. Antioxid Redox Signal 21(9):1356–1372PubMedCrossRefGoogle Scholar
  27. Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte CP, Schulze WX, Romeis T (2013) Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc Natl Acad Sci 110(21):8744–8749PubMedCrossRefGoogle Scholar
  28. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10(4):366–371PubMedCrossRefGoogle Scholar
  29. Fratelli M, Gianazza E, Ghezzi P (2004) Redox proteomics: identification and functional role of glutathionylated proteins. Expert Rev Proteomics 1(3):365–376PubMedCrossRefGoogle Scholar
  30. Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18(8):2021–2034PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427PubMedCrossRefGoogle Scholar
  32. Fukuda H (1996) Xylogenesis: initiation, progression, and cell death. Annu Rev Plant Biol 47(1):299–325CrossRefGoogle Scholar
  33. Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inzé D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141(2):436–445PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gallogly MM, Mieyal JJ (2007) Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol 7(4):381–391PubMedCrossRefGoogle Scholar
  35. Garapati P, Xue GP, Munné-Bosch S, Balazadeh S (2015) Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. Plant Physiol 168(3):1122–1139PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168(1):17–20PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefGoogle Scholar
  38. Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy AR, Karpiński S, Mittler R (2016) ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171(3):1606–1615PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gould KS, McKelvie J, Markham KR (2002) Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ 25(10):1261–1269CrossRefGoogle Scholar
  40. Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124(1):21–30PubMedPubMedCentralCrossRefGoogle Scholar
  41. Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant–pathogen interactions. Cell Microbiol 6(3):201–211PubMedCrossRefGoogle Scholar
  42. Grunewald W, Friml J (2010) The March of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J 29(16):2700–2714PubMedPubMedCentralCrossRefGoogle Scholar
  43. Guo P, Li Z, Huang P, Li B, Fang S, Chu J, Guo H (2017) A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell 29:2854–2870PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gupta K, Jha B, Agarwal PK (2014) A dehydration-responsive element binding (DREB) transcription factor from the succulent halophyte Salicornia brachiata enhances abiotic stress tolerance in transgenic tobacco. Mar Biotechnol 16(6):657–673PubMedCrossRefGoogle Scholar
  45. He F, Li HG, Wang JJ, Su Y, Wang HL, Feng CH, Yang Y, Niu MX, Liu C, Yin W, Xia X (2019) PeSTZ1, a C2H2‐type zinc finger transcription factor from Populus euphratica, enhances freezing tolerance through modulation of ROS scavenging by directly regulating PeAPX2. Plant Biotechnol J.  https://doi.org/10.1111/pbi.13130 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Heyman J, Canher B, Bisht A, Christiaens F, De Veylder L (2018) Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. J Cell Sci 131(2):208215CrossRefGoogle Scholar
  47. Hirt H (1997) Multiple roles of MAP kinases in plant signal transduction. Trends Plant Sci 2(1):11–15CrossRefGoogle Scholar
  48. Htet Hlaing K, Clement MV (2014) Formation of protein S-nitrosylation by reactive oxygen species. Free Radical Res 48(9):996–1010CrossRefGoogle Scholar
  49. Huang X, Wang W, Zhang Q, Liu JH (2013) A basic helix-loop-helix transcription factor PtrbHLH of Poncirus trifoliata confers cold tolerance and modulates POD-mediated scavenging of H2O2. Plant Physiol 162:1178–1194PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hwang JE, Lim CJ, Chen H, Je J, Song C, Lim CO (2012) Overexpression of Arabidopsis dehydration-responsive element-binding protein 2C confers tolerance to oxidative stress. Mol Cell 33(2):135–140CrossRefGoogle Scholar
  51. Jia H, Hao L, Guo X, Liu S, Yan Y, Guo X (2016) A Raf-like MAPKKK gene, GhRaf19, negatively regulates tolerance to drought and salt and positively regulates resistance to cold stress by modulating reactive oxygen species in cotton. Plant Sci 252:267–281PubMedCrossRefGoogle Scholar
  52. Jia D, Jiang Q, van Nocker S, Gong X, Ma F (2019) An apple (Malus domestica) NAC transcription factor enhances drought tolerance in transgenic apple plants. Plant Physiol Biochem 139:504–512PubMedCrossRefGoogle Scholar
  53. Jiang G, Yan H, Wu F, Zhang D, Zeng W, Qu H, Chen F, Tan L, Duan X, Jiang Y (2017) Litchi fruit LcNAC1 is a target of LcMYC2 and regulator of fruit senescence through its interaction with LcWRKY1. Plant Cell Physiol 58(6):1075–1089PubMedCrossRefGoogle Scholar
  54. Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17(3):957–970PubMedPubMedCentralCrossRefGoogle Scholar
  55. Karpinski S, Gabrys H, Mateo A, Karpinska B, Mullineaux PM (2003) Light perception in plant disease defence signalling. Curr Opin Plant Biol 6:390–396PubMedCrossRefGoogle Scholar
  56. Karuppanapandian T, Moon J, Kim C, Manoharan K (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725Google Scholar
  57. Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21(9):829–837PubMedGoogle Scholar
  58. Khedia J, Agarwal P, Agarwal PK (2018) AlNAC4 transcription factor from halophyte Aeluropus lagopoides mitigates oxidative stress by maintaining ROS homeostasis in transgenic tobacco. Front Plant Sci 9:1522PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323(5917):1053–1057PubMedCrossRefGoogle Scholar
  60. Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci 97(16):8849–8855PubMedCrossRefGoogle Scholar
  61. Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10(3):310–316PubMedCrossRefGoogle Scholar
  62. Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci 97(6):2940–2945PubMedCrossRefGoogle Scholar
  63. Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Biol 48(1):251–275CrossRefGoogle Scholar
  64. Le CTT, Brumbarova T, Ivanov R, Stoof C, Weber E, Mohrbacher J, Fink-Straube C, Bauer P (2016) Zinc finger of Arabidopsis thaliana12 (ZAT12) interacts with FER-like iron deficiency-induced transcription factor (FIT) linking iron deficiency and oxidative stress responses. Plant Physiol 170(1):540–557PubMedCrossRefGoogle Scholar
  65. Li XD, Zhuang KY, Liu ZM, Yang DY, Ma NN, Meng QW (2016) Overexpression of a novel NAC-type tomato transcription factor, SlNAM1, enhances the chilling stress tolerance of transgenic tobacco. J Plant Physiol 204:54–65PubMedCrossRefGoogle Scholar
  66. Li SW, Leng Y, Shi RF (2017) Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings. BMC Genom 18(1):188CrossRefGoogle Scholar
  67. Li M, Lin L, Zhang Y, Sui N (2019) ZmMYB31, a R2R3-MYB transcription factor in maize, positively regulates the expression of CBF genes and enhances resistance to chilling and oxidative stress. Mol Biol Rep  46:3937–3944PubMedCrossRefGoogle Scholar
  68. Liao C, Zheng Y, Guo Y (2017) MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN-mediated cytosolic calcium signalling in Arabidopsis. New Phytol 216(1):163–177PubMedCrossRefGoogle Scholar
  69. Lu W, Chu X, Li Y, Wang C, Guo X (2013) Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS One 8(7):68503CrossRefGoogle Scholar
  70. Lv X, Li H, Chen X, Xiang X, Guo Z, Yu J, Zhou Y (2018) The role of calcium-dependent protein kinase in hydrogen peroxide, nitric oxide and ABA-dependent cold acclimation. J Exp Bot 69:4127–4139PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ma X, Wang WM, Bittner F, Schmidt N, Berkey R, Zhang L, King H, Zhang Y, Feng J, Wen Y, Tan L (2016) Dual and opposing roles of xanthine dehydrogenase in defense-associated reactive oxygen species metabolism in Arabidopsis. Plant Cell 28:1108–1126PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mabuchi K, Maki H, Itaya T, Suzuki T, Nomoto M, Sakaoka S, Morikami A, Higashiyama T, Tada Y, Busch W, Tsukagoshi H (2018) MYB30 links ROS signaling, root cell elongation, and plant immune responses. Proc Natl Acad Sci 115(20):E4710–E4719PubMedCrossRefGoogle Scholar
  73. Madian AG, Regnier FE (2010) Proteomic identification of carbonylated proteins and their oxidation sites. J Proteome Res 9(8):3766–3780PubMedPubMedCentralCrossRefGoogle Scholar
  74. Maruta T, Noshi M, Nakamura M, Matsuda S, Tamoi M, Ishikawa T, Shigeoka S (2014) Ferulic acid 5-hydroxylase 1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis. Plant Sci 219:61–68PubMedCrossRefGoogle Scholar
  75. Matern S, Peskan-Berghoefer T, Gromes R, Kiesel RV, Rausch T (2015) Imposed glutathione-mediated redox switch modulates the tobacco wound-induced protein kinase and salicylic acid-induced protein kinase activation state and impacts on defence against Pseudomonas syringae. J Exp Bot 66(7):1935–1950PubMedPubMedCentralCrossRefGoogle Scholar
  76. McKersie BD, Murnaghan J, Jones KS, Bowley SR (2000) Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol 122(4):1427–1438PubMedPubMedCentralCrossRefGoogle Scholar
  77. Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19(3):819–830PubMedPubMedCentralCrossRefGoogle Scholar
  78. Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55(6):853–867PubMedCrossRefGoogle Scholar
  79. Miao Y, Laun TM, Smykowski A, Zentgraf U (2007) Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Mol Biol 65(1–2):63–76PubMedCrossRefGoogle Scholar
  80. Miller GAD, Mittler RON (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98(2):279–288PubMedPubMedCentralCrossRefGoogle Scholar
  81. Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489PubMedCrossRefGoogle Scholar
  82. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467CrossRefGoogle Scholar
  83. Mittler R, Herr EH, Orvar BL, Van Camp W, Willekens H, Inzé D, Ellis BE (1999) Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc Natl Acad Sci 96(24):14165–14170PubMedCrossRefGoogle Scholar
  84. Mittler R, Vanderauwera S, Suzuki N, Miller GAD, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309PubMedCrossRefGoogle Scholar
  85. Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481PubMedCrossRefGoogle Scholar
  86. Montillet JL, Chamnongpol S, Rustérucci C, Dat J, Van De Cotte B, Agnel JP, Battesti C, Inzé D, Van Breusegem F, Triantaphylides C (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 138(3):1516–1526PubMedPubMedCentralCrossRefGoogle Scholar
  87. Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10(7):339–346PubMedCrossRefGoogle Scholar
  88. Negi S, Tak H, Ganapathi TR (2018) A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H2O2 content. Plant Mol Biol 96(4–5):457–471PubMedCrossRefGoogle Scholar
  89. Ng S, Ivanova A, Duncan O, Law SR, Van Aken O, De Clercq I, Wang Y, Carrie C, Xu L, Kmiec B, Walker H (2013) A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell 25:3450–3471PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nie WF, Wang MM, Xia XJ, Zhou YH, Shi K, Chen Z, Yu JQ (2013) Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2 generation and stress tolerance. Plant Cell Environ 36(4):789–803PubMedCrossRefGoogle Scholar
  91. Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850PubMedPubMedCentralCrossRefGoogle Scholar
  92. O’Brien JA, Daudi A, Finch P, Butt VS, Whitelegge JP, Souda P, Ausubel FM, Bolwell GP (2012) A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defence. Plant Physiol 158:2013–2027PubMedPubMedCentralCrossRefGoogle Scholar
  93. Pastore D, Trono D, Laus MN, Di Fonzo N, Flagella Z (2007) Possible plant mitochondria involvement in cell adaptation to drought stress—a case study: durum wheat mitochondria. J Exp Bot 58(2):195–210PubMedCrossRefGoogle Scholar
  94. Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406(6797):731PubMedPubMedCentralCrossRefGoogle Scholar
  95. Pitzschke A, Djamei A, Bitton F, Hirt H (2009) A major role of the MEKK1–MKK1/2–MPK4 pathway in ROS signalling. Mol Plant 2(1):120–137PubMedPubMedCentralCrossRefGoogle Scholar
  96. Ren D, Yang KY, Li GJ, Liu Y, Zhang S (2006) Activation of Ntf4, a tobacco mitogen-activated protein kinase, during plant defense response and its involvement in hypersensitive response-like cell death. Plant Physiol 141(4):1482–1493PubMedPubMedCentralCrossRefGoogle Scholar
  97. Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141(2):357–366PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rizhsky L, Liang H, Mittler R (2003) The water-water cycle is essential for chloroplast protection in the absence of stress. J Biol Chem 278:38921–38925PubMedCrossRefGoogle Scholar
  99. Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279(12):11736–11743PubMedCrossRefGoogle Scholar
  100. Samuel MA, Miles GP, Ellis BE (2000) Ozone treatment rapidly activates MAP kinase signalling in plants. Plant J 22(4):367–376PubMedCrossRefGoogle Scholar
  101. Sapara K, Khedia J, Agarwal P, Gangapur D, Agarwal PK (2019) SbMYB15 transcription factor mitigates cadmium and nickel stress in transgenic tobacco by limiting uptake and modulating antioxidative defence system. Func Plant Biol.  https://doi.org/10.1071/FP18234 CrossRefGoogle Scholar
  102. Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JH, Mueller-Roeber B (2013) SALT-RESPONSIVE ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sewelam N, Kazan K, Thomas-Hall SR, Kidd BN, Manners JM, Schenk PM (2013) Ethylene response factor 6 is a regulator of reactive oxygen species signaling in Arabidopsis. PLoS One 8(8):e70289PubMedPubMedCentralCrossRefGoogle Scholar
  104. Shacter E (2000) Protein oxidative damage. Methods Enzymol 319:428–436PubMedCrossRefGoogle Scholar
  105. Shi H, Liu G, Wei Y, Chan Z (2018) The zinc-finger transcription factor ZAT6 is essential for hydrogen peroxide induction of anthocyanin synthesis in Arabidopsis. Plant Mol Biol 97(1–2):165–176PubMedCrossRefGoogle Scholar
  106. Somssich IE (1997) MAP kinases and plant defense. Trends Plant Sci 2(11):406–408CrossRefGoogle Scholar
  107. Song C, Chung WS, Lim CO (2016) Overexpression of heat shock factor gene HsfA3 increases galactinol levels and oxidative stress tolerance in Arabidopsis. Mol Cells 39(6):477PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tavares CP, Vernal J, Delena RA, Lamattina L, Cassia R, Terenzi H (2014) S-nitrosylation influences the structure and DNA binding activity of AtMYB30 transcription factor from Arabidopsis thaliana. BBA Proteins Proteomics 4:810–817CrossRefGoogle Scholar
  109. Tian S, Wang X, Li P, Wang H, Ji H, Xie J, Qiu Q, Shen D, Dong H (2016) Plant aquaporin AtPIP1; 4 links apoplastic H2O2 induction to disease immunity pathways. Plant Physiol 171:1635–1650PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tian Y, Fan M, Qin Z, Lv H, Wang M, Zhang Z, Zhou W, Zhao N, Li X, Han C, Ding Z (2018) Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nat Commun 9(1):1063PubMedPubMedCentralCrossRefGoogle Scholar
  111. Tognetti VB, Van Aken O, Morreel K, Vandenbroucke K, Van De Cotte B, De Clercq I, Chiwocha S, Fenske R, Prinsen E, Boerjan W, Genty B (2010) Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 22:2660–2679PubMedPubMedCentralCrossRefGoogle Scholar
  112. Tognetti VB, Mühlenbock PER, Van Breusegem F (2012) Stress homeostasis–the redox and auxin perspective. Plant Cell Environ 35(2):321–333PubMedCrossRefGoogle Scholar
  113. Voothuluru P, Sharp RE (2012) Apoplastic hydrogen peroxide in the growth zone of the maize primary root under water stress. I. Increased levels are specific to the apical region of growth maintenance. J Exp Bot 64(5):1223–1233PubMedCrossRefGoogle Scholar
  114. Wang C, Yang A, Yin H, Zhang J (2008) Influence of water stress on endogenous hormone contents and cell damage of maize seedlings. J Integr Plant Biol 50(4):427–434PubMedCrossRefGoogle Scholar
  115. Wang J, Ding H, Zhang A, Ma F, Cao J, Jiang M (2010) A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J Integr Plant Biol 52(5):442–452PubMedGoogle Scholar
  116. Wang P, Du Y, Zhao X, Miao Y, Song CP (2013) The MPK6-ERF6-ROSE7/GCC-box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis thaliana. Plant Physiol 161:1392–1408PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wang L, Su H, Han L, Wang C, Sun Y, Liu F (2014) Differential expression profiles of poplar MAP kinase kinases in response to abiotic stresses and plant hormones, and overexpression of PtMKK4 improves the drought tolerance of poplar. Gene 545(1):141–148PubMedCrossRefGoogle Scholar
  118. Wang L, Zhao R, Zheng Y, Chen L, Li R, Ma J, Hong X, Ma P, Sheng J, Shen L (2017) SlMAPK1/2/3 and antioxidant enzymes are associated with H2O2-induced chilling tolerance in tomato plants. J Agric Food Chem 65(32):6812–6820PubMedCrossRefGoogle Scholar
  119. Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Asensi-Fabado MA, Munné-Bosch S, Antonio C, Tohge T, Fernie AR (2012) JUNGBRUNNEN1, a reactive oxygen species–responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24:482–506PubMedPubMedCentralCrossRefGoogle Scholar
  120. Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150(2):801–814PubMedPubMedCentralCrossRefGoogle Scholar
  121. Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66(10):2839–2856PubMedCrossRefGoogle Scholar
  122. Xing Y, Cao Q, Zhang Q, Qin L, Jia W, Zhang J (2013) MKK5 regulates high light-induced gene expression of Cu/Zn superoxide dismutase 1 and 2 in Arabidopsis. Plant Cell Physiol 54(7):1217–1227PubMedCrossRefGoogle Scholar
  123. Xing Y, Chen WH, Jia W, Zhang J (2015) Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress. J Exp Bot 66(19):5971–5981PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yin H, Hong G, Li L, Zhang X, Kong Y, Sun Z, Li J, Chen J, He Y (2019) miR156/SPL9 regulates reactive oxygen species accumulation and immune response in Arabidopsis thaliana. Phytopathology 109(4):632–642PubMedCrossRefGoogle Scholar
  125. Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15(3):706–718PubMedPubMedCentralCrossRefGoogle Scholar
  126. Yun BW, Feechan A, Yin M, Saidi NB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH, Pallas JA (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478(7368):264PubMedCrossRefGoogle Scholar
  127. Zeng XQ, Chow WS, Su LJ, Peng XX, Peng CL (2010) Protective effect of supplemental anthocyanins on Arabidopsis leaves under high light. Physiol Plant 138(2):215–225PubMedCrossRefGoogle Scholar
  128. Zhang A, Zhang J, Ye N, Cao J, Tan M, Zhang J, Jiang M (2010) ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defense in leaves of maize. J Exp Bot 61(15):4399–4411PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zhang Q, Su LJ, Chen JW, Zeng XQ, Sun BY, Peng CL (2012) The antioxidative role of anthocyanins in Arabidopsis under high-irradiance. Biol Plantarum 56(1):97–104CrossRefGoogle Scholar
  130. Zhang J, Zou D, Li Y, Sun X, Wang NN, Gong SY, Zheng Y, Li XB (2014) GhMPK17, a cotton mitogen-activated protein kinase, is involved in plant response to high salinity and osmotic stresses and ABA signaling. PLoS One 9(4):95642CrossRefGoogle Scholar
  131. Zhang H, Li A, Zhang Z, Huang Z, Lu P, Zhang D, Liu X, Zhang ZF, Huang R (2016) Ethylene response factor TERF1, regulated by ETHYLENE-INSENSITIVE3-like factors, functions in reactive oxygen species (ROS) scavenging in tobacco (Nicotiana tabacum L.). Sci rep 6:29948PubMedPubMedCentralCrossRefGoogle Scholar
  132. Zhou L, Hou H, Yang T, Lian Y, Sun Y, Bian Z, Wang C (2018) Exogenous hydrogen peroxide inhibits primary root gravitropism by regulating auxin distribution during Arabidopsis seed germination. Plant Physiol Biochem 128:126–133PubMedCrossRefGoogle Scholar
  133. Zwack PJ, De Clercq I, Howton TC, Hallmark HT, Hurny A, Keshishian EA, Parish AM, Benkova E, Mukhtar MS, Van Breusegem F, Rashotte AM (2016) Cytokinin response factor 6 represses cytokinin-associated genes during oxidative stress. Plant Physiol 172:1249–1258PubMedPubMedCentralGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Division of Biotechnology and PhycologyCSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI)BhavnagarIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia

Personalised recommendations