3 Biotech

, 9:298 | Cite as

Encapsulation of in vitro Plectranthus amboinicus (Lour.) Spreng. shoot apices for propagation and conservation

  • Greetha Arumugam
  • Uma Rani SinniahEmail author
  • Mallappa Kumara Swamy
  • Paul T. Lynch
Original Article


This investigation demonstrates an efficient method of propagation, short-term conservation, and germplasm exchange for Plectranthus amboinicus (Lour.) Spreng. encapsulated propagules. In vitro-derived shoot apices (shoot tips and nodal segments) which showed 100% survival on MS medium supplemented with 0.4 mg/L 6-benzylaminopurine were selected for encapsulation studies. Shoot apices measuring about 3–5 mm in size showed the ability to break the beads and exhibited 100% survival and regrowth. The combination of 3% (w/v) sodium alginate and 100 mM CaCl2 was found to be ideal for forming uniformally spherical beads, and successive preservation of encapsulated shoot apices into plantlets. The encapsulated shoot tips were relatively more effective than the nodal segments in terms of shoot growth and multiplication. Encapsulated shoot tips retained the ability to regrow (63.3%) for up to 40 days when maintained at 4 °C. Encapsulated shoot tips effectively converted into plantlets on agar medium (78%) and peat moss (58%) under in vitro conditions. Encapsulated shoot tips on agar medium showed a higher shoot regeneration (9.91 ± 0.15 shoots per explant) ability than the peat moss (5.71 ± 0.34 shoots per explant), while the highest rooting (12.16 ± 0.23 roots per explant) was observed on peat moss. Thus, calcium alginate encapsulation holds latent qualities that could be explored to develop a future alternative method of propagation, short-term storage and germplasm distribution for elite genotypes of Plectranthus sp.


Synthetic seed Propagation Short-term storage Germplasm exchange 


Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Abdel-Rahman SSA (2003) Untersuchungen zum Einkapseln von Sprossegmenten fir die Ver-wendingals Künstliche Samen am Beispiel von Chrysanthemen und Rosen, PhD Thesis, Humboldt University of Berlin, GermanyGoogle Scholar
  2. Adhikari S, Bandyopadhyay TK, Ghosh P (2014) Assessment of genetic stability of Cucumis sativus L. regenerated from encapsulated shoot tips. Sci Hortic 170:115–122CrossRefGoogle Scholar
  3. Ahmed MR, Anis M, Al-Etta HA (2015) Encapsulation technology for short-term storage and germplasm exchange of Vitex trifolia L. Rend Fis Acc Lincei 26:133–139CrossRefGoogle Scholar
  4. Ara H, Jaiswal U, Jaiswal VS (2000) Synthetic seed: prospects and limitations. Curr Sci 78(12):1438–1444Google Scholar
  5. Arumugam G, Swamy MK, Sinniah UR (2016) Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological, and nutritional significance. Molecules 21:369CrossRefGoogle Scholar
  6. Bapat VA, Mhatre M (2005) Bioencapsulation of somatic embryos in woody plants. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht, pp 539–552CrossRefGoogle Scholar
  7. Chand S, Singh AK (2004) Plant regeneration from encapsulated nodal segments of Dalbergia sissoo Roxb.—a timber yielding leguminous tree. J Plant Physiol 161:237–243CrossRefGoogle Scholar
  8. Danso KE, Ford-Lloyd BV (2003) Encapsulation of nodal cuttings and shoot tips for storage and exchange of cassava germplasm. Plant Cell Rep 21:718–725PubMedGoogle Scholar
  9. Engelmann F, Engels JMM, Dulloo ME (2003) The development of complementary strategies for the conservation of plant genetic resources using in vitro and cryopreservation methods. In: Chaudhury R, Pandey R, Malik SK, Bhag M (eds) In vitro conservation and cryopreservation of tropical fruit species. IPGRI Office for South Asia and NBPGR, New Delhi, pp 37–48Google Scholar
  10. Faisal M, Anis M (2007) Regeneration of plants from alginate encapsulated shoots of Tylophora indica (Burm. f.) Merrill, an endangered medicinal plant. J Hort Sci Biotechnol 82:351–354CrossRefGoogle Scholar
  11. Gantait S, Vijayan J, Majee A (2017) Artificial seed production of Tylophora indica for interim storing and swapping of germplasm. Horticult Plant J 3(1):41–46CrossRefGoogle Scholar
  12. Germanà MA, Micheli M, Chiancone B, Macaluso L, Standardi A (2011) Organogenesis and encapsulation of in vitro-derived propagules of Carrizo citrange (Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.). Plant Cell Tissue Organ Cult 106:299–307CrossRefGoogle Scholar
  13. Ghosh B, Sen S (1994) Plant regeneration from alginate encapsulated somatic embryos of Asparagus cooperi Baker. Plant Cell Rep 13:381–385CrossRefGoogle Scholar
  14. Hung CD, Trueman SJ (2011) Encapsulation technology for short-term preservation and germplasm distribution of the African mahogany Khaya senegalensis. Plant Cell Tissue Organ Cult 107:397–405CrossRefGoogle Scholar
  15. Hung CD, Trueman SJ (2012) Alginate encapsulation of shoot tips and nodal segments for short-term storage and distribution of the eucalypt Corymbia torelliana × C. citriodora. Acta Physiol Plant 34:117–128CrossRefGoogle Scholar
  16. Islam MS, Bari MA (2012) In vitro regeneration protocol for artificial seed production in an important medicinal plant Mentha arvensis L. J Biol Sci 20:99–108Google Scholar
  17. Kumar S, Rai MK, Singh N, Mangal M (2010) Alginate-encapsulation of shoot tips of jojoba [Simmondsia chinensis (Link) Schneider] for germplasm exchange and distribution. Physiol Mol Biol Plants 16:379–382CrossRefGoogle Scholar
  18. Lukhoba CW, Simmonds MSJ, Paton AJ (2006) Plectranthus: a review of ethnobotanical uses. J Ethanopharmacol 103:1–24CrossRefGoogle Scholar
  19. Mandal J, Pattnaik S, Chand PK (2000) Alginate encapsulation of axillary buds of Ocimum americanum L. (Hoary basil), O. basilicum (sweet basil), O. gratissimum (shrubby basil) and O. sanctum (sacred basil). Vitro Cell Dev Biol Plant 36:287–292CrossRefGoogle Scholar
  20. Maruyama E, Kinoshita I, Ishii K, Shigenaga H, Ohba K, Saito A (1997) Alginate-ecnapsulation technology for the propagation of the tropical forest trees: Cedrela odorata L., Guazuma crinita Mart., Jacaranda mimosifolia D. Don. Silvae Genet 46:17–23Google Scholar
  21. Mishra J, Singh M, Palni LMS, Nandi SK (2011) Assessment of genetic fidelity of encapsulated microshoots of Picrorhiza kurrooa. Plant Cell Tissue Organ Cult 104:181–186CrossRefGoogle Scholar
  22. Naz R, Anis M, Alatar AA, Ahmad A, Naaz A (2018) Nutrient alginate encapsulation of nodal segments of Althaea officinalis L., for short-term conservation and germplasm exchange. Plant Biosyst 22:1–7Google Scholar
  23. Nhut DT, TienTNT Huong MTN, Hien NTT, Huyen PX, Luan VQ, Teixeira da Silva JA (2005) Artificial seeds for propagation and preservation of Cymbidium spp. Propag Ornam Plants 5:67–73Google Scholar
  24. Nower AB (2014) In vitro propagation and synthetic seeds production: an efficient method for Stevia rebaudiana Bertoni. Sugar Tech 16:100–108CrossRefGoogle Scholar
  25. Ozudogru EA, Kirdok E, Kaya E, Capuana M, De Carlo A, Engelmann F (2011) Medium-term conservation of redwood [Sequoia sempervirens (D. Don) Endl.] in vitro shoot cultures and encapsulated buds. Sci Hortic 127:431–435CrossRefGoogle Scholar
  26. Piccioni E (1997) Plantlets from encapsulated micropropagated buds of M.26 apple rootstock. Plant Cell Tissue Organ Cult 47:255–260CrossRefGoogle Scholar
  27. Pinker I, Abdel-Rahman SSA (2005) Artificial seed for propagation of Dendranthema × grandiflora (Ramat.). Prop Orn Plant 5:186–191Google Scholar
  28. Rai MK, Jaiswal VS, Jaiswal U (2008) Effect of ABA and sucrose on germination of encapsulated somatic embryos of guava (Psidium guajava L.). Sci Hortic 117:302–305CrossRefGoogle Scholar
  29. Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit plants-a review. Biotechnol Adv 27:671–679CrossRefGoogle Scholar
  30. Reddy MC, Murthy KSR, Pullaiah T (2012) Synthetic seeds: a review in agriculture and forestry. Afr J Biotechnol 11(78):254–275Google Scholar
  31. Rice LJ, Brits GI, Potgieter CJ, Van Staden J (2011) Plectranthus: a plant for the future? S Afr J Bot 77:947–959CrossRefGoogle Scholar
  32. Rihan HZ, Al-Issawi M, Burchett S, Fuller MP (2011) Encapsulation of cauliflower (Brassica oleracea var botrytis) microshoots as artificial seeds and their conversion and growth in commercial substrates. Plant Cell Tissue Organ Cult 107:243–250CrossRefGoogle Scholar
  33. Shaheen A, Shahzad A (2015) Nutrient encapsulation of nodal segments of an endangered white cedar for studies of regrowth, short term conservation and ethylene inhibitors influenced ex vitro rooting. Ind Crops Prod 69:204–211CrossRefGoogle Scholar
  34. Sharma S, Shahzad A, Sahai A (2009) Artificial seeds for propagation and preservation of Spilanthes acmella (L.) Murr., a threatened pesticidal plant species. Int J Plant Dev Biol 3:62–64Google Scholar
  35. Sharma S, Shahzad A, Teixeira da Silva JA (2013) Synseed technology—a complete synthesis. Biotechnol Adv 31:186–207CrossRefGoogle Scholar
  36. Siddique I, Anis M (2009) Morphogenic response of the alginate encapsulated nodal segments and antioxidative enzymes analysis during acclimatization of Ocimum basilicum L. J Crop Sci Biotechnol 12:233–238CrossRefGoogle Scholar
  37. Singh AK, Sharma M, Varshney R, Agarwal SS, Bansal KC (2006) Plant regeneration from alginate to encapsulated shoot tips of Phyllanthus amarus Schum and Thonn, a medicinally important plant species. Vitro Cell Dev Biol Plant 42:109–113CrossRefGoogle Scholar
  38. Singh SK, Rai MK, Asthana P, Sahoo L (2010) Alginate-encapsulation of nodal segments for propagation, short-term conservation and germplasm exchange and distribution of Eclipta alba (L.). Acta Physiol Plant 32:607–610CrossRefGoogle Scholar
  39. Srivastava V, Khan SA, Banerjee S (2009) An evaluation of genetic fidelity of encapsulated microshoots of the medicinal plant: Cineraria maritima following six months of storage. Plant Cell Tissue Organ Cult 99:193–198CrossRefGoogle Scholar
  40. Standardi A, Piccioni E (1998) Recent perspectives on synthetic seed technology using nonembryogenic in vitro derived explants. Int J Plant Sci 159(6):968–978Google Scholar
  41. Sundararaj SG, Agrawal A, Tyagi RK (2010) Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Sci Hortic 125:761–766CrossRefGoogle Scholar
  42. Swamy MK, Balasubramanya S, Anuradha M (2009) Germplasm conservation of patchouli (Pogostemon cablin Benth.) by encapsulation of in vitro derived nodal segments. Int J Biol Control 8:224–230Google Scholar
  43. Swaroopa G, Nigam N, Maniyam A (2007) Germplasm conservation of selected lines of Coleus forskohlii (Willd.) Briq by nodal segment encapsulation. Phytomorphol 57:221–225Google Scholar
  44. Verma SK, Raj MK, Asthana P, Jaiswal VS, Jaiswal U (2010) In vitro plantlets from alginate—encapsulated shoot tips of Solanum nigrum L. Sci Hortic 124:517–521CrossRefGoogle Scholar
  45. WHO, IUCN, WWF (1986) Guidelines on the conservation of medicinal plants. Castel Cary Press, SomersetGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Greetha Arumugam
    • 1
  • Uma Rani Sinniah
    • 1
    Email author
  • Mallappa Kumara Swamy
    • 1
    • 2
  • Paul T. Lynch
    • 3
  1. 1.Department of Crop Science, Faculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of BiotechnologyEast West First Grade College of ScienceBengaluruIndia
  3. 3.Environmental Sustainability Research Centre, College of Life and Natural SciencesUniversity of DerbyDerbyUK

Personalised recommendations