Advertisement

3 Biotech

, 9:167 | Cite as

Taxonomic characterization and antimicrobial compound production from Streptomyces chumphonensis BDK01 isolated from marine sediment

  • Madheslu Manikandan
  • Vasudevan Gowdaman
  • Kasiviswanathan Duraimurugan
  • Solai Ramatchandirane PrabagaranEmail author
Original Article

Abstract

Streptomyces sp. isolated from marine sediment collected from Palk Strait, Bay of Bengal was investigated for its antagonistic potential. The isolate exhibited antimicrobial activity against selected bacterial strains of clinical importance such as Staphylococcus aureus MTCC 3160, Bacillus pumilus NCIM 2327, S. aureus (methicillin resistant), Escherichia coli MTCC 1698, E. coli (ESBL), Shigella flexneri MTCC 1457, Proteus vulgaris and Enterobacter cloacae. Phenotypic and molecular characterization ascertained the isolate BDK01 as Streptomyces chumphonensis. Media optimization with one variable-at-a-time strategy was attempted to identify the ideal concentrations of starch (5–15 g/l), casein (0.01–0.05 g/l), NaCl 1.0–3.0 g/l, pH (4.0–9.0 g/l), temperature (25–45 °C) and inoculum level (0.5–5 ml) towards achieving maximum antimicrobial compound production. Statistical optimization of production media was carried by establishing an 11 variables 17 run experiment through PB model which evinced starch, calcium carbonate, pH and inoculum concentration that highly influenced bioactive compound production. Spectral data of active ethyl acetate extract revealed the presence of various bioactive compounds such as Salicyl alcohol, N-phenyl benzamide. 6-Octadecenoic acid, (Z), 1,3,5-Cycloheptatriene. Antiproliferation activity of active fraction against MCF-7 Cell line exhibited IC50 value of 9.5 µg/ml. Overall, it is observed that the marine actinomycete S. chumphonensis BDK01 could be employable as promising strain for novel antimicrobial and cytotoxic metabolites.

Keywords

Marine actinomycetes Microbial diversity Antimicrobial activity Streptomyces chumphonensis strain BDK01 Anticancer activity 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13205_2019_1687_MOESM1_ESM.doc (98 kb)
Supplementary material 1 (DOC 98 kb)

References

  1. Arockia J, Veerabahu R, Mohan (2014) GC-MS analysis of bioactive components on the stem extract of Bacolepsis nervosa decne. Ex. Moq. (Periplocaceae). World J Pharm Pharm Sci 3(4):1044–1059.Google Scholar
  2. Arumugam M, Mitra A, Jaisankar P et al (2010) Isolation of an unusual metabolite 2-allyloxyphenol from a marine actinobacterium, its biological activities and applications. Appl Microbiol Biotechnol 86:109–117.  https://doi.org/10.1007/s00253-009-2311-2 CrossRefPubMedGoogle Scholar
  3. Badji B, Zitouni A, Mathieu F et al (2006) Antimicrobial compounds produced by Actinomadura sp. AC104 isolated from an Algerian Saharan soil. Can J Microbiol 52:373–382.  https://doi.org/10.1139/w05-132 CrossRefPubMedGoogle Scholar
  4. Basu S, Choudhury UR, Das M, Datta G (2013) Identification of bioactive components in ethanolic and aqueous extracts of Amorphophallus campanulatus tuber by GC-MS analysis. Int J Phytomed 5:243–251Google Scholar
  5. Becker B, Lechevalier MP, Gordon RE, Lechevalier HA (1964) Rapid Differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. Appl Microbiol 12:421–423PubMedPubMedCentralGoogle Scholar
  6. Bordoloi GN, Kumari B, Guha A et al (2001) Isolation and structure elucidation of a new antifungal and antibacterial antibiotic produced by Streptomyces sp. 201. Biosci Biotechnol Biochem 65:1856–1858.  https://doi.org/10.1271/bbb.65.1856 CrossRefPubMedGoogle Scholar
  7. Bull AT, Stach JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499CrossRefGoogle Scholar
  8. Campfield B, Chen K, Kolls JK (2014) Vaccine approaches for multidrug resistant Gram negative infections. Curr Opin Immunol 28:84–89CrossRefGoogle Scholar
  9. Chen X-C, Bai J-X, Cao J-M et al (2009) Medium optimization for the production of cyclic adenosine 3′,5′-monophosphate by Microbacterium sp. no. 205 using response surface methodology. Bioresour Technol 100:919–924.  https://doi.org/10.1016/j.biortech.2008.07.062 CrossRefPubMedGoogle Scholar
  10. Cohen SP, Levy SB, Foulds J, Rosner JL (1993) Salicylate induction of antibiotic resistance in Escherichia coli: activation of the mar operon and a mar-independent pathway. J Bacteriol 175:7856–7862.  https://doi.org/10.1128/jb.175.24.7856-7862.1993 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Corre J, Lucchini JJ, Mercier GM, Cremieux A (1990) Antibacterial activity of phenethyl alcohol and resulting membrane alterations. Res Microbiol 141:483–497.  https://doi.org/10.1016/0923-2508(90)90074-Z CrossRefPubMedGoogle Scholar
  12. Dalisay DS, Williams DE, Wang XL et al (2013) Marine sediment-derived Streptomyces bacteria from british columbia, canada are a promising microbiota resource for the discovery of antimicrobial natural products. PLoS One.  https://doi.org/10.1371/journal.pone.0077078 CrossRefPubMedPubMedCentralGoogle Scholar
  13. de Oliveira PF, Damasceno JL, Bertanha CS et al (2016) Study of the cytotoxic activity of Styrax camporum extract and its chemical markers, egonol and homoegonol. Cytotechnology 68:1597–1602.  https://doi.org/10.1007/s10616-015-9864-y CrossRefPubMedGoogle Scholar
  14. Desai KR, Shaikh MS, Coutinho EC (2011) Molecular modeling studies, synthesis and biological evaluation of derivatives of N-phenylbenzamide as Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. Med Chem Res 20:321–332.  https://doi.org/10.1007/s00044-010-9323-4 CrossRefGoogle Scholar
  15. Dhanasekaran D, Thajuddin N, Panneerselvam A (2008) An Antifungal compound: 4′ phenyl-1-naphthyl -phenyl acetamide from Streptomyces sp. DPTB16. Facta Univ Med Biol 15:7–12Google Scholar
  16. Durairaj T, Ramasamy V (2013) A potent fish pathogenic bacterial killer Streptomyces sp. isolated from the soils of east coast region, South India. J Coast Life Med 1:175–180.  https://doi.org/10.12980/JCLM.1.2013C1086 CrossRefGoogle Scholar
  17. El-Shemy HA, Aboul-Enein AM, Aboul-Enein KM, Fujita K (2007) Willow leaves’ extracts contain anti-tumor agents effective against three cell types. PLoS One 2:e178.  https://doi.org/10.1371/journal.pone.0000178 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ertan T, Yildiz I, Tekiner-Gulbas B et al (2009) Synthesis, biological evaluation and 2D-QSAR analysis of benzoxazoles as antimicrobial agents. Eur J Med Chem 44:501–510.  https://doi.org/10.1016/j.ejmech.2008.04.001 CrossRefPubMedGoogle Scholar
  19. Friedman M, Henika PR, Mandrell RE (2002) Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot 65:1545–1560.  https://doi.org/10.4315/0362-028X-65.10.1545 CrossRefPubMedGoogle Scholar
  20. Ghasemzadeh A, Jaafar HZE, Karimi E (2012) Involvement of salicylic acid on antioxidant and anticancer properties, anthocyanin production and chalcone synthase activity in ginger (zingiber officinale roscoe) varieties. Int J Mol Sci 13:14828–14844.  https://doi.org/10.3390/ijms131114828 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gheda SF, Khalil MA, Gheida SF (2013) In vitro and in vivo preliminary results on Spirulina platensis for treatment of impetigo: topical cream application. Afr J Biotechnol 12:2498–2509.  https://doi.org/10.5897/AJB12.1640 CrossRefGoogle Scholar
  22. Githinji CG, Mbugua PM, Kanui TI, Kariuki DK (2012) Analgesic and anti-inflammatory activities of 9-hexacosene and stigmasterol isolated from Mondia whytei. Phytopharmacology 2:212–223Google Scholar
  23. Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (eds) (2012) Bergey’s manual of systematic bacteriology, vol 5. The Actinobacteria, part A and B. Springer, New York, NYGoogle Scholar
  24. Gu Q, Lu J, Cui C et al (2004) Recent researches of bioactive metabolites in marine organisms-associated microorganisms. J Ocean Univ China 3:150–156.  https://doi.org/10.1007/s11802-004-0026-7 CrossRefGoogle Scholar
  25. Guo Z, Shen L, Ji Z, Wu W (2012) Enhanced production of a novel cyclic hexapeptide antibiotic (NW-G01) by Streptomyces alboflavus 313 using response surface methodology. Int J Mol Sci 13:5230–5241.  https://doi.org/10.3390/ijms13045230 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gupte MD, Kulkarni PR (2002) A study of antifungal antibiotic production by Streptomyces cattanoogensis MTCC 3423 using full factorial design. Lett Appl Microbiol 35:22–26.  https://doi.org/10.1046/j.1472-765X.2002.01119.x CrossRefPubMedGoogle Scholar
  27. Hema R, Kumaravel S, Alagusundaram K (2011) GC/MS determination of bioactive components of Murraya koenigii. J Am Sci 7:2009–2012Google Scholar
  28. Hsouna AB, Trigui M, Mansour RB et al (2011) Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int J Food Microbiol 148:66–72.  https://doi.org/10.1016/j.ijfoodmicro.2011.04.028.CrossRefPubMedGoogle Scholar
  29. Huang CB, Alimova Y, Myers TM, Ebersole JL (2011) Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch Oral Biol 56:650–654.  https://doi.org/10.1016/j.archoralbio.2011.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ilić SB, Konstantinović SS, Todorović ZB (2005) UV/VIS analysis and antimicrobial activity of Streptomyces isolates. Med Biol 12:44–46.  https://doi.org/10.1142/S0217595914500213 CrossRefGoogle Scholar
  31. Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 87:43–48.  https://doi.org/10.1007/s10482-004-6540-1 CrossRefGoogle Scholar
  32. Ji XY, Wang HQ, Hao LH et al (2013) Synthesis and antiviral activity of N-phenylbenzamide derivatives, a novel class of Enterovirus 71 inhibitors. Molecules 18:3630–3640.  https://doi.org/10.3390/molecules18033630 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jiang Z, Wang H, Li Y et al (2015) Synthesis and antiviral activity of a series of novel N-phenylbenzamide and N-phenylacetophenone compounds as anti-HCV and anti-EV71 agents. Acta Pharm Sin B 5:201–209.  https://doi.org/10.1016/j.apsb.2015.03.013 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kwon HC, Kauffman CA, Jensen PR, Fenical W (2006) Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinispora”. J Am Chem Soc 128:1622–1632.  https://doi.org/10.1021/ja0558948 CrossRefPubMedGoogle Scholar
  35. Li Y, Jiang H, Xu Y, Zhang X (2008) Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method. Appl Microbiol Biotechnol 77:1207–1217.  https://doi.org/10.1007/s00253-007-1213-4 CrossRefPubMedGoogle Scholar
  36. López A, Dong SM, Towers GHN (2002) Antifungal activity of benzoic acid derivatives from Piper lanceaefolium. J Nat Prod 65:62–64.  https://doi.org/10.1021/np010410g CrossRefPubMedGoogle Scholar
  37. Lu Y, Wang J, Deng Z et al (2013) Isolation and characterization of fatty acid methyl ester (FAME)-producing Streptomyces sp. S161 from sheep (Ovis aries) faeces. Lett Appl Microbiol 57:200–205.  https://doi.org/10.1111/lam.12096 CrossRefPubMedGoogle Scholar
  38. Mitra A, Santra SC, Mukherjee J (2008) Distribution of actinomycetes, their antagonistic behaviour and the physico-chemical characteristics of the world’s largest tidal mangrove forest. Appl Microbiol Biotechnol 80:685–695.  https://doi.org/10.1007/s00253-008-1626-8 CrossRefPubMedGoogle Scholar
  39. Murugesan S, Senthilkumar N, Rajeshkannan C, Vijayalakshmi KB (2013) Phytochemical characterization of Melia dubia for their biological properties. Der Chem Sin 4:36–40Google Scholar
  40. Niewiadomy A, Matysiak J, Mącik-Niewiadomy G (2001) In vitro evaluation of 2,4-dihydroxythiobenzanilides against various moulds. Eur J Pharm Sci 13:243–248.  https://doi.org/10.1016/S0928-0987(01)00126-9 CrossRefPubMedGoogle Scholar
  41. Nithyanand P, Manju S, Karutha Pandian S (2011) Phylogenetic characterization of culturable actinomycetes associated with the mucus of the coral Acropora digitifera from Gulf of Mannar. FEMS Microbiol Lett 314:112–118CrossRefGoogle Scholar
  42. Parthasarathi S, Sathya S, Bupesh G et al (2012) Isolation and characterization of antimicrobial compound from marine Streptomyces hygroscopicus BDUS 49. World J Fish Mar Sci 4:5–7.  https://doi.org/10.5829/idosi.wjfms.2012.04.03.5658 CrossRefGoogle Scholar
  43. Parthasarathi S, Sathya S, Bupesh G et al (2013) Isolation, characterization and extraction of antimicrobial compound from marine actinomycete Streptomyces hygroscopicus BDUS 49. Res J Biotechnol 8:40–48Google Scholar
  44. Pasha FA, Muddassar M, Lee C, Cho SJ (2008) Mechanism based QSAR studies of N-phenylbenzamides as antimicrobial agents. Environ Toxicol Pharmacol 26:128–135.  https://doi.org/10.1016/j.etap.2008.01.005 CrossRefPubMedGoogle Scholar
  45. Peela S, Kurada VVSNB, Terli R (2005) Studies on antagonistic marine actinomycetes from the Bay of Bengal. World J Microbiol Biotechnol 21:583–585.  https://doi.org/10.1007/s11274-004-3493-5 CrossRefGoogle Scholar
  46. Phongsopitanun W, Thawai C, Suwanborirux K et al (2014) Streptomyces chumphonensis sp. nov., isolated from marine sediments. Int J Syst Evol Microbiol 64:2605–2610.  https://doi.org/10.1099/ijs.0.062992-0 CrossRefPubMedGoogle Scholar
  47. Pietro Z, Maurizio S, Maurizio B, Antonella, M, Sergio R, Carmen F, Felice S (2010) Essential oil composition of stems and fruits of Caralluma europaea N.E.Br. (Apocynaceae). Molecules 15:627–638CrossRefGoogle Scholar
  48. Praveen V, Tripathi CKM, Bihari V, Srivastava SC (2008) Production of actinomycin-D by the mutant of a new isolate of Streptomyces sindenensis. Braz J Microbiol 39:689–692.  https://doi.org/10.1590/S1517-83822008000400017 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Prescott LM, Klein DA, Harley JP (2002) Microbiology, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  50. Pridham TG, Hesseltine CW, Benedict RG (1958) A guide for the classification of Streptomycetes according to selected groups. J Biol Chem Can J Microbiol 189:109–114Google Scholar
  51. Raghad DH, Jalill A (2014) GC-MS analysis of Calendula officinalis and cytotoxic effects of its flower crude extract on human epidermoid larynx carcinoma (HEP-2). World J Pharm Pharm Sci 3:237–275Google Scholar
  52. Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of pharmaceutical excipients, 6th edn. Pharmaceutical Press and American Pharmacists Association. ISBN 978 0 85369 792 3Google Scholar
  53. Remya M, Vijayakumar R (2008) Isolation and characterization of marine antagonistic actinomycetes from west coast of India. Med Biol 15:13–19.  https://doi.org/10.1117/1.1801431 CrossRefGoogle Scholar
  54. Romano G, Costantini M, Sansone C et al (2017) Marine microorganisms as a promising and sustainable source of bioactive molecules. Mar Environ Res 128:58–69.  https://doi.org/10.1016/j.marenvres.2016.05.002 CrossRefPubMedGoogle Scholar
  55. Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of pharmaceutical excipients, 6th edn. Pharmaceutical Press and American Pharmacists Association. ISBN 978 0 85369 792 3Google Scholar
  56. Sathiyanarayanan G, Gandhimathi R, Sabarathnam B et al (2014) Optimization and production of pyrrolidone antimicrobial agent from marine sponge-associated Streptomyces sp. MAPS15. Bioprocess Biosyst Eng 37:561–573.  https://doi.org/10.1007/s00449-013-1023-2 CrossRefPubMedGoogle Scholar
  57. Saurav K, Rajakumar G, Kannabiran K et al (2013) Larvicidal activity of isolated compound 5-(2,4-dimethylbenzyl) pyrrolidin-2-one from marine Streptomyces VITSVK5 sp. against Rhipicephalus (Boophilus) microplus, Anopheles stephensi, and Culex tritaeniorhynchus. Parasitol Res 112:215–226.  https://doi.org/10.1007/s00436-011-2682-z CrossRefPubMedGoogle Scholar
  58. Schillinger U, Lücke FK (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55:1901–1906.  https://doi.org/10.1016/S0168-1605(03)00051-5 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340.  https://doi.org/10.1099/00207713-16-3-313 CrossRefGoogle Scholar
  60. Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231PubMedPubMedCentralGoogle Scholar
  61. Sujatha P, Bapi Raju KVVSN, Ramana T (2005) Studies on a new marine streptomycete BT-408 producing polyketide antibiotic SBR-22 effective against methicillin resistant Staphylococcus aureus. Microbiol Res 160:119–126.  https://doi.org/10.1016/j.micres.2004.10.006 CrossRefPubMedGoogle Scholar
  62. Suput J, Lechevalier MP, Lechevalier HA (1967) Chemical composition of variants of aerobic actinomycetes. Appl Microbiol 15:1356–1361PubMedPubMedCentralGoogle Scholar
  63. Suthindhiran K, Kannabiran K (2010) Diversity and exploration of bioactive marine actinomycetes in the Bay of Bengal of the Puducherry coast of India. Indian J Microbiol 50:76–82.  https://doi.org/10.1007/s12088-010-0048-3 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tayung K, Barik B, Jha D, Deka DC (2011) Identification and characterization of antimicrobial metabolite from an endophytic fungus, Fusarium solani isolated from bark of Himalayan yew. Mycosphere 2:203–213Google Scholar
  66. Thangam R, Suresh V, Rajkumar M et al (2013) Antioxidant and in vitro anticancer effect of 2-pyrrolidinone rich fraction of Brassica oleracea var. capitata through induction of apoptosis in human cancer cells. Phytother Res 27:1664–1670.  https://doi.org/10.1002/ptr.4908 CrossRefPubMedGoogle Scholar
  67. Trust TJ, Bartlett KH (1975) Antibacterial activity of tropilidine and tropone. Antimicrob Agents Chemother 8:381–383CrossRefGoogle Scholar
  68. Üçüncü H, Aktafi AE, Yazgi H et al (2005) Assessment of antibacterial activity of some topical otological solutions. Turk J Ear Nose Thorat 14:97–100Google Scholar
  69. Ulrich S, Wolfgang H (1974) Effect of nomifensine (Hoe 984), a new antidepressant, on uptake of noradrenaline and serotonin and on release of noradrenaline in rat brain synaptosomes. Pharmacology 23(24):3413–3422Google Scholar
  70. Varsha KK, Devendra L, Shilpa G et al (2015) 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int J Food Microbiol 211:44–50.  https://doi.org/10.1016/j.ijfoodmicro.2015.06.025 CrossRefPubMedGoogle Scholar
  71. Vejselova D, Kutlu HM (2015) Inhibitory effects of salicylic acid on A549 human lung adenocarcinoma cell viability. Turk J Biol 39:1–5.  https://doi.org/10.3906/biy-1401-7 CrossRefGoogle Scholar
  72. Vijayakumar R, Panneerselvam K, Muthukumar C et al (2012) Optimization of antimicrobial production by a marine actinomycete Streptomyces afghaniensis VPTS3-1 isolated from palk strait, East Coast of India. Indian J Microbiol 52:230–239.  https://doi.org/10.1007/s12088-011-0138-x CrossRefPubMedGoogle Scholar
  73. Wu X-C, Chen W-F, Qian C-D et al (2007) Isolation and identification of newly isolated antagonistic Streptomyces sp. strain AP19-2 producing chromomycins. J Microbiol 45:499–504PubMedGoogle Scholar
  74. Yukphan P, Potacharoen W, Tanasupawat S et al (2004) Asaia krungthepensis sp. nov., an acetic acid bacterium in the α-proteobacteria. Int J Syst Evol Microbiol 54:313–316.  https://doi.org/10.1099/ijs.0.02734-0 CrossRefPubMedGoogle Scholar
  75. Zheng Z, Zeng W, Huang Y et al (2000) Detection of antitumor and antimicrobial activities in marine organism associated actinomycetes isolated from the Taiwan Strait, China. FEMS Microbiol Lett 188:87–91.  https://doi.org/10.1016/S0378-1097(00)00215-9 CrossRefPubMedGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Madheslu Manikandan
    • 1
  • Vasudevan Gowdaman
    • 2
  • Kasiviswanathan Duraimurugan
    • 3
  • Solai Ramatchandirane Prabagaran
    • 4
    Email author
  1. 1.Department of BiotechnologySri Krishna Arts and Science CollegeCoimbatoreIndia
  2. 2.Genomics LabMegavision Life Sciences Pvt LtdPuneIndia
  3. 3.School of Community Science and TechnologyIndian Institute of Engineering Science and TechnologyShibpurIndia
  4. 4.Department of BiotechnologyBharathiar UniversityCoimbatoreIndia

Personalised recommendations