Advertisement

3 Biotech

, 9:119 | Cite as

Proteome study of somatic embryogenesis in Nothapodytes nimmoniana (J. Graham) Mabberly

  • Tasiu IsahEmail author
Original Article
  • 43 Downloads

Abstract

Somatic embryogenesis (SE) is the most suitable biotechnological tool for the rapid clonal propagation of endangered woody plants, but many bottlenecks limit understanding its molecular and physiological processes in Nothapodytes nimmoniana. Combinations of two-dimensional electrophoresis (2-DE) and mass spectrometry (MaSp) were used to study proteomic expression changes during SE of the forest tree. Callus was induced from mature seed embryos, and embryogenic callus (EC) obtained at very low frequency after about 6 month culture. Globular embryos were induced from the seed embryo-derived EC and the subsequent stages of the SE. Analysis of the extracted proteins from globular, heart/torpedo-shaped, and maturing embryo stages resolved in the 2-DE gels showed increased protein expression across developmental stages of the somatic embryos. The mass spectrometric analysis with database search aided identification of 55 out of 100 and 54 selected protein spots. Identified proteins classified by the cellular role which they perform are involved in aspects of stress responses, energy metabolism, carbon fixation, secondary metabolism, and other metabolic functions, while three proteins are of unknown cellular role. The putative role of the expressed proteins during SE provided insight into the physiology of somatic embryo development in N. nimmoniana.

Keywords

Nothapodytes nimmoniana Camptothecin Somatic embryogenesis Proteomics Two-dimensional electrophoresis Mass spectrometry 

Abbreviations

SE

Somatic embryogenesis

EC

Embryogenic callus

2-DE

Two-dimensional electrophoresis

MS

Murashige and Skoog medium

2,4-D

2,4-Dichlorophenoxy acetic acid

NAA

Naphthalene acetic acid

IAA

Indole 3-acetic acid

BAP

Benzylaminopurine

GA3

Gibberellic acid

DTT

Dithiothreitol

IEF

Isoelectric focusing

NCBInr

National Center for Biotechnology

MaSp

Mass spectrometry

NAD+

Nicotinamide adenine dinucleotide

ROS

Reactive oxygen species

CPT

Camptothecin

GE

Globular embryos

TH

Heart/torpedo-shaped embryos

ME

Mature/maturing embryos

HPTLC

High-performance thin-layer chromatography

Notes

Acknowledgements

Tasiu Isah is grateful to The World Academy of Science (TWAS) for the advancement of science in the developing World Trieste, Italy, and Department of Biotechnology (DBT), Government of India New Delhi for the award of DBT-TWAS Postgraduate Research Fellowship. Technical assistance provided by colleagues and laboratory technologist is acknowledge. Research facilities provided by the Department of Botany, Hamdard University New Delhi, India, are also acknowledged.

Author contributions

TI conceived the research idea, performed the experiments, and wrote the manuscript. TI, SU, and MPS assisted with intellectual contribution and editing of the manuscript. All authors approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

Authors declare that no conflict of interest exists in the manuscript contents.

Supplementary material

13205_2019_1637_MOESM1_ESM.docx (7.5 mb)
Supplementary material 1 (DOCX 7677 KB)

References

  1. Abbasi BH, Ali H, Yücesan B, Saeed S, Rehman K, Khan MA (2016) Evaluation of biochemical markers during somatic embryogenesis in Silybum marianum L. 3 Biotech 6(1):71.  https://doi.org/10.1007/s13205-016-0366-1 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agrawal GK, Sarkar A, Righetti PG et al (2013) A decade of plant proteomics and mass spectrometry: translation of technical advancements to food security and safety issues. Mass Spectrom Rev 32:335–365.  https://doi.org/10.1002/mas.21365 CrossRefPubMedGoogle Scholar
  3. Ahuja I, de Vos RCH, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674.  https://doi.org/10.1016/j.tplants.2010.08.002 CrossRefPubMedGoogle Scholar
  4. Ali M, Isah T, Mujib A, Dipti T (2016) Climber plants: medicinal importance and conservation strategies. In: Shahzad A, Sharma S, Siddiqui SA (eds) Biotechnological strategies for the conservation of medicinal and ornamental climbers. Springer International Publishing, Switzerland, pp 101–138.  https://doi.org/10.1007/978-3-319-19288-8 CrossRefGoogle Scholar
  5. Andriotis VM, Kruger NJ, Pike MJ, Smith AM (2010) Plastidial glycolysis in developing Arabidopsis embryos. New Phytol 185:649–662.  https://doi.org/10.1111/j.1469-8137.2009.03113.x CrossRefPubMedGoogle Scholar
  6. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399.  https://doi.org/10.1146/annurev.arplant.55.031903.141701 CrossRefGoogle Scholar
  7. Baba AI, Nogueira FC, Pinheiro CB et al (2008) Proteome analysis of secondary somatic embryogenesis in cassava (Manihot esculenta). Plant Sci 175(5):717–723.  https://doi.org/10.1016/j.plantsci.2008.07.014 CrossRefGoogle Scholar
  8. Balbuena TS, Silveira V, Junqueira M (2009) Changes in the 2-DE protein profile during zygotic embryogenesis in the Brazilian Pine (Araucaria angustifolia). J Proteomics 72(3):337–352.  https://doi.org/10.1016/j.jprot.2009.01.011 CrossRefPubMedGoogle Scholar
  9. Batra P, Sharma AK (2013) Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech 3(6):439–459.  https://doi.org/10.1007/s13205-013205-013-0117-5 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Beeler S, Liu HC, Stadler M et al (2014) Plastidial NAD-dependent malate dehydrogenase is critical for embryo development and heterotrophic metabolism in Arabidopsis. Plant Physiol 164(3):1175–1190.  https://doi.org/10.1104/pp.113.233866 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bomal C, Le VQ, Tremblay FM (2002) Induction of tolerance to fast desiccation in black spruce (Picea mariana) somatic embryos: relationship between partial water loss, sugars, and dehydrins. Physiol Plant 115(4):523–530.  https://doi.org/10.1034/j.1399-3054.2002.1150406.x CrossRefPubMedGoogle Scholar
  12. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Burrieza HP, Lopez-Fernandez MP, Chiquieri TB et al (2012) Accumulation pattern of dehydrins during sugarcane (var. SP80. 3280) somatic embryogenesis. Plant Cell Rep 31(12):2139–2149.  https://doi.org/10.1007/s00299-012-1323-z CrossRefPubMedGoogle Scholar
  14. Businge E, Bygdell J, Wingsle G et al (2013) The effect of carbohydrates and osmoticum on storage reserve accumulation and germination of Norway spruce somatic embryos. Plant Physiol 149:273–285.  https://doi.org/10.1111/ppl.12039 CrossRefGoogle Scholar
  15. Chen SX, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504–5516.  https://doi.org/10.1002/pmic.200600143 CrossRefPubMedGoogle Scholar
  16. de Moura Vale EM, Heringer AS, Barroso T et al (2014) Comparative proteomic analysis of somatic embryo maturation in Carica papaya L. Proteome Sci 12(1):37.  https://doi.org/10.1186/1477-5956-12-37 CrossRefGoogle Scholar
  17. Fulzele DP, Satdive RK (2003) Somatic embryogenesis, plant regeneration, and evaluation of camptothecin content in Nothapodytes foetida. In Vitro Cell Dev Biol Plant 39(2):212–216.  https://doi.org/10.1079/IVP2002368 CrossRefGoogle Scholar
  18. Fulzele DP, Satdive RK (2005) Comparison of techniques for the extraction of the anticancer drug camptothecin from Nothapodytes foetida. J Chromatogr A 1063(1–2):9–13.  https://doi.org/10.1016/j.chroma.2004.11.020 CrossRefPubMedGoogle Scholar
  19. Gantait S, Debnath S, Ali MN (2014) Genomic profile of the plants with pharmaceutical value. 3 Biotech 4(6):563–578.  https://doi.org/10.1007/s13205-014-0218-9 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ge X, Zhang C, Wang Q et al (2014) iTRAQ Protein profile differential analysis between somatic globular and cotyledonary embryos reveals stress, hormone, and respiration involved in increasing plantlet regeneration of Gossypium hirsutum L. J Proteome Res 14(1):268–278.  https://doi.org/10.1021/pr500688g CrossRefPubMedGoogle Scholar
  21. Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82(2):331–371.  https://doi.org/10.1152/physrev.00030.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gomez-Garay A, Lopez JA, Camafeita E et al (2013) Proteomic perspective of Quercus suber somatic embryogenesis. J Proteomics 93:314–325.  https://doi.org/10.1016/j.jprot.2013 CrossRefPubMedGoogle Scholar
  23. Gonzalez E (1990) Expression and localization of malate synthase during maturation and desiccation of castor bean seeds. Protoplasma 154(1):53–58.  https://doi.org/10.1007/BF01349535 CrossRefGoogle Scholar
  24. Govindachari TR, Viswanathan N (1972) The alkaloids of Mappia foetida. Phytochem 11(12):3529.  https://doi.org/10.1016/S0031-9422(00)89852-0 CrossRefGoogle Scholar
  25. Guan Y, Li SG, Fan XF, Su ZH (2016) Application of somatic embryogenesis in woody plants. Front Plant Sci 7:938.  https://doi.org/10.3389/fpls.2016.00938 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gupta SD, Datta S (2003) Antioxidant enzyme activities during in vitro morphogenesis of Gladiolus and effect of the application of antioxidants on plant regeneration. Biol Plant 47(2):179–183.  https://doi.org/10.1023/B:BIOP.0000022248.62869.c7 CrossRefGoogle Scholar
  27. Gupta PK, Timmis R, Pullman G et al (1991) Development of an embryogenic system for automated propagation of forest trees. In: Vasil I (ed) Scale-up and automation in plant propagation. Academic press Inc., New York, pp 75–80.  https://doi.org/10.1016/B978-0-12-715008-6.50011-7 CrossRefGoogle Scholar
  28. Higashi K, Shiota H, Kamada H (1998) Patterns of expression of the genes for glutamine synthetase isoforms during somatic and zygotic embryogenesis in carrot. Plant Cell Physiol 39(4):418–424.  https://doi.org/10.1093/oxfordjournals.pcp.a029385 CrossRefPubMedGoogle Scholar
  29. Imin N, De Jong F, Mathesius U et al (2004) Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts. Proteomics 4(7):1883–1896.  https://doi.org/10.1002/pmic.200300803 CrossRefPubMedGoogle Scholar
  30. Iraqi D, Tremblay FM (2001a) Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J Exp Bot 52(365):2301–2311.  https://doi.org/10.1093/jexbot/52.365.2301 CrossRefPubMedGoogle Scholar
  31. Iraqi D, Tremblay FM (2001b) The role of sucrose during maturation of black spruce (Picea mariana) and white spruce (Picea glauca) somatic embryos. Physiol Plant 111(3):381–388.  https://doi.org/10.1034/j.1399-3054.2001.1110316.x CrossRefPubMedGoogle Scholar
  32. Isaacson T, Damasceno CM, Saravanan RS et al (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protocols 1(2):769–774.  https://doi.org/10.1038/nprot.2006.102 CrossRefPubMedGoogle Scholar
  33. Isah T (2015a) Natural sources of taxol. Br J Pharma Res 6(4):214–227.  https://doi.org/10.9734/BJPR/2015/16293 CrossRefGoogle Scholar
  34. Isah T (2015b) Adjustments to in vitro culture conditions and associated anomalies in plants. Acta Biol Cracov s Botanica 57(2):9–28.  https://doi.org/10.1515/abcsb-2015-0026 CrossRefGoogle Scholar
  35. Isah T (2016a) Induction of somatic embryogenesis in woody plants. Acta Physiol Plant 38:118.  https://doi.org/10.1007/s11738-016-2134-6 CrossRefGoogle Scholar
  36. Isah T (2016b) Anticancer alkaloids from trees: development into drugs. Pharmacogn Rev 10(20):90.  https://doi.org/10.4103/0973-7847.194047 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Isah T (2017) Production of camptothecin in the elicited callus cultures of Nothapodytes nimmoniana (J. Graham) Mabberly. Chem Papers 71:1091–1106.  https://doi.org/10.1007/s11696-016-0056-9 CrossRefGoogle Scholar
  38. Isah T, Mujib A (2012) Studies on antioxidant enzymes activity during in vitro morphogenesis of Caladium bicolor Linn. Intl J Modern Cell Mol Biol 1(1):1–9Google Scholar
  39. Isah T, Mujib A (2015a) In vitro propagation and camptothecin production in Nothapodytes nimmoniana. Plant Cell Tiss Organ Cult 121:1–10.  https://doi.org/10.1007/s11240-014-0683-1 CrossRefGoogle Scholar
  40. Isah T, Mujib A (2015b) Camptothecin from Nothapodytes nimmoniana: review on biotechnology applications. Acta Physiol Plant 37:106.  https://doi.org/10.1007/s11738-015-1854-3 CrossRefGoogle Scholar
  41. Isah T, Mujib A (2015c) Enhanced in vitro seedling recovery in Nothapodytes nimmoniana. British Biotechnol J 6(1):2231–2927.  https://doi.org/10.9734/BBJ/2015/15368 CrossRefGoogle Scholar
  42. Isah T, Umar S (2018) Influencing in vitro clonal propagation of Chonemorpha fragrans (moon) Alston by culture media strength, plant growth regulators, carbon source and photoperiodic incubation. J For Res.  https://doi.org/10.1007/s11676-018-0794-3 CrossRefGoogle Scholar
  43. Isah T, Umar S, Mujib A et al (2018) Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell Tiss Organ Cult 132:239–265.  https://doi.org/10.1007/s11240-017-1332-2 CrossRefGoogle Scholar
  44. Jariteh M, Ebrahimzadeh H, Niknam V et al (2013) Antioxidant enzymes activities during secondary somatic embryogenesis in Persian walnut (Juglans regia L.). Afr J Biotechnol 10(20):4093–4099.  https://doi.org/10.5897/AJB10.1248 CrossRefGoogle Scholar
  45. Jariteh M, Ebrahimzadeh H, Niknam V et al (2015) Developmental changes in protein, proline and some antioxidant enzymes activities in somatic and zygotic embryos of Persian walnut (Juglans regia L.). Plant Cell Tiss Organ Cult 122:101–115.  https://doi.org/10.1007/s11240-015-0753-z CrossRefGoogle Scholar
  46. Jimenez VM (2001) Regulation of in vitro Somatic Embryogenesis with emphasis on the role of endogenous hormones. Rev Brasi de Fisio Vegl 13:196–223.  https://doi.org/10.1590/S0103-31312001000200008 CrossRefGoogle Scholar
  47. Kairong C, Gengsheng X, Lin Q et al (1999) The analysis of differential gene expression in early somatic embryogenesis on Lycium barbarum. Plant Cell Tiss Organ Cult 59(3):169–174.  https://doi.org/10.1023/A:1006311628358 CrossRefGoogle Scholar
  48. Khadke S, Kuvalekar A (2013) Direct somatic embryogenesis and plant regeneration from leaf and stem explants of N. foetida: a critically endangered plant species. Int J Plant Anim Environ Sci 3(1):257–264Google Scholar
  49. Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27(6):675–684.  https://doi.org/10.1111/j.1365-3040.2004.01180.x CrossRefGoogle Scholar
  50. Kulkarni AV, Patwardhan AA, Lele U, Malpathak NP (2010) Production of camptothecin in cultures of Chonemorpha grandiflora. Pharmacogn Res 2(5):296–299.  https://doi.org/10.4103/0974-8490.72327 CrossRefGoogle Scholar
  51. Kumari S, Roy S, Singh P et al (2013) Cyclophilins: proteins in search of a function. Plant Signal Behav 8(1):e22734.  https://doi.org/10.4161/psb.22734 CrossRefPubMedGoogle Scholar
  52. Li XP, Gilmore AM, Caffarri S et al (2004) Regulation of photosynthetic light harvesting involves intra-thylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279(22):22866–22874.  https://doi.org/10.1074/jbc.M402461200 CrossRefPubMedGoogle Scholar
  53. Lippert D, Zhuang J, Ralph S et al (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5(2):461–473.  https://doi.org/10.1002/pmic.200400986 CrossRefPubMedGoogle Scholar
  54. Liu XD, Shen YG (2004) NaCl-induced phosphorylation of light-harvesting chlorophyll a/b proteins in thylakoid membranes from the halo-tolerant green alga, Dunaliella salina. FEBS Lett 569(1–3):337–340.  https://doi.org/10.1016/j.febslet.2004.05.065 CrossRefPubMedGoogle Scholar
  55. Lutz JD, Wong JR, Rowe J et al (1985) Somatic embryogenesis for mass cloning of crop plants. In: Henke RR et al (eds) Tissue culture in forestry and agriculture: basic life sciences, vol 32, Springer, New York, pp 105–116.  https://doi.org/10.1007/978-1-4899-0378-5_8 CrossRefGoogle Scholar
  56. Lyngved R, Renaut J, Hausman JF et al (2008) Embryo-specific proteins in Cyclamen persicum analyzed with 2-D DIGE. J Plant Growth Regul 27(4):353–369.  https://doi.org/10.1007/s00344-008-9061-8 CrossRefGoogle Scholar
  57. Manjasetty BA, Büssow K, Panjikar S, Turnbull AP (2012) Current methods in structural proteomics and its applications in biological sciences. 3 Biotech 2(2):89–113.  https://doi.org/10.1007/s13205-011-0037-1 CrossRefGoogle Scholar
  58. Marsoni M, Bracale M, Espen L et al (2008) Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 27(2):347–356.  https://doi.org/10.1007/s00299-007-0438-0 CrossRefPubMedGoogle Scholar
  59. Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 100:675–688.  https://doi.org/10.1023/A:1013343106574 CrossRefGoogle Scholar
  60. Minocha R, Minocha SC, Long S (2004) Polyamines and their biosynthetic enzymes during somatic embryo development in red spruce (Picea rubens Sarg.). In Vitro Cell Dev Biol Plant 40(6):572–580.  https://doi.org/10.1079/IVP2004569 CrossRefGoogle Scholar
  61. Mujib A, Ali M, Isah T, Dipti T (2014) Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor)—a comparative study. Saudi J Biol Sci 21(5):442–449.  https://doi.org/10.1016/j.sjbs.2014.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Mujib A, Ali M, Tonk D, Isah T, Zafar N (2016) Embryogenesis in ornamental monocots: plant growth regulators as signaling element. In: Mujib A (ed) Somatic embryogenesis in ornamentals and its applications. Springer, New York, pp 187–201.  https://doi.org/10.1007/978-81-322-2683-3_12 CrossRefGoogle Scholar
  63. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  64. Noah AM, Niemenak N, Sunderhaus S et al (2013) Comparative proteomic analysis of early somatic and zygotic embryogenesis in Theobroma cacao L. J Proteomics 78:123–133.  https://doi.org/10.1016/j.jprot.2012.11.007 CrossRefPubMedGoogle Scholar
  65. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250(10):4007–4021PubMedPubMedCentralGoogle Scholar
  66. Padmanabha BV, Chandrashekar M, Ramesha BT et al (2006) Patterns of accumulation of camptothecin, an anti-cancer alkaloid in Nothapodytes nimmoniana Graham., in the Western Ghats, India: implications for identifying high-yielding sources of the alkaloid. Curr Sci Bangalore 90(1):95Google Scholar
  67. Pan Z, Guan R, Zhu S, Deng X (2009) Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep 28(2):281–289.  https://doi.org/10.1007/s00299-008-0633-7 CrossRefPubMedGoogle Scholar
  68. Prakash L, Middha SK, Mohanty SK, Swamy MK (2016) Micropropagation and validation of genetic and biochemical fidelity among regenerants of Nothapodytes nimmoniana (Graham) Mabb. employing ISSR markers and HPLC. 3 Biotech 6(2):171.  https://doi.org/10.1007/s13205-016-0490-y CrossRefPubMedPubMedCentralGoogle Scholar
  69. Quiroz-Figueroa F, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tiss Organ Cult 86:285–301.  https://doi.org/10.1007/s11240-006-9139-6 CrossRefGoogle Scholar
  70. Ramesha BT, Amna T, Ravikanth G et al (2008) Prospecting for camptothecines from Nothapodytes nimmoniana in the Western Ghats, South India: identification of high-yielding sources of camptothecin and new families of camptothecines. J Chromatogr Sci 46(4):362–368.  https://doi.org/10.1093/chromsci/46.4.362 CrossRefPubMedGoogle Scholar
  71. Rode C, Lindhorst K, Braun HP, Winkelmann T (2012) From callus to embryo: a proteomic view on the development and maturation of somatic embryos in Cyclamen persicum. Planta 235(5):995–1011.  https://doi.org/10.1007/s00425-011-1554-1 CrossRefPubMedGoogle Scholar
  72. Sghaier-Hammamia B, Driraa N, Jorrin-Novo JV (2009) Comparative 2-DE proteomic analysis of date palm (Phoenix dactylifera L.) somatic and zygotic embryos. J Proteomics 73:161–177.  https://doi.org/10.1016/j.jprot.2009.07.003 CrossRefGoogle Scholar
  73. Shin JH, Kim SR, An G (2009) Rice aldehyde dehydrogenase 7 is needed for seed maturation and viability. Plant Physiol 149(2):905–915.  https://doi.org/10.1104/pp.108.130716 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Shohael AM, Ali MB, Hahn EJ, Paek KY (2007) Glutathione metabolism and antioxidant responses during Eleutherococcus senticosus somatic embryo development in a bioreactor. Plant Cell Tiss Organ Cult 89(2–3):121–129.  https://doi.org/10.1007/s11240-007-9220-9 CrossRefGoogle Scholar
  75. Silveira V, Santa-Catarina C, Tun NN et al (2006) Polyamine effects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryogenic suspension cultures of Araucaria angustifolia (Bert.) O. Ktze. Plant Sci 171(1):91–98.  https://doi.org/10.1016/j.plantsci.2006.02.015 CrossRefGoogle Scholar
  76. Suhas S, Ramesha BT, Ravikanth G et al (2007) Chemical profiling of Nothapodytes nimmoniana populations in the Western Ghats, India for anti-cancer compound, camptothecin. Curr Sci 92(8):1142–1147Google Scholar
  77. Teyssier C, Maury S, Beaufour M et al (2014) In search of markers for somatic embryo maturation in hybrid larch (Larix × eurolepis): global DNA methylation and proteomic analyses. Physiol Plant 150(2):271–291.  https://doi.org/10.1111/ppl.12081 CrossRefPubMedGoogle Scholar
  78. Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132(1):118–136.  https://doi.org/10.1104/pp.103.019968 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Vondrakova Z, Eliasova K, Fischerova L, Vagner M (2011) The role of auxins in somatic embryogenesis of Abies alba. Central Eur J Biol 6(4):587–596.  https://doi.org/10.2478/s11535-011-0035-7 CrossRefGoogle Scholar
  80. Winkelmann T, Heintz D, Van Dorsselaer A et al (2006) Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology. Planta 224(3):508–519.  https://doi.org/10.1007/s00425-006-0238-8 CrossRefPubMedGoogle Scholar
  81. Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of the activity of key enzymes. Crit Rev Plant Sci 19(1):31–67.  https://doi.org/10.1080/10409230008984165 CrossRefGoogle Scholar
  82. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735.  https://doi.org/10.1093/aob/mci083 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Yamamoto H, Katano N, Ooi A, Inoue K (2000) Secologanin synthase which catalyzes the oxidative cleavage of loganin into secologanin is a cytochrome P450. Phytochem 53:7–12.  https://doi.org/10.1016/S0031-9422(99)00471-9 CrossRefGoogle Scholar
  84. Yamazaki Y, Sudo H, Yamazaki M et al (2003a) Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant Cell Physiol 44(4):395–403.  https://doi.org/10.1093/pcp/pcg051 CrossRefPubMedGoogle Scholar
  85. Yamazaki Y, Urano A, Sudo H (2003b) Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochem 62(3):461–470.  https://doi.org/10.1016/S0031-9422(02)00543-5 CrossRefGoogle Scholar
  86. Zavattieri M, Frederico A, Lima M et al (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotechnol N Am 13(1):15.  https://doi.org/10.2225/vol13-issue1-fulltext-4 CrossRefGoogle Scholar
  87. Zhu JK, Shi J, Bressan RA, Hasegawa PM (1993) Expression of an Atriplex nummularia gene encoding a protein homologous to bacterial molecular chaperone DNA. J Plant Cell 5:341–349.  https://doi.org/10.1105/tpc.5.3.341 CrossRefGoogle Scholar
  88. Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5(10):1411.  https://doi.org/10.1105/tpc.5.10.1411 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Department of Botany, School of Chemical and Life SciencesHamdard UniversityNew DelhiIndia

Personalised recommendations