Advertisement

3 Biotech

, 9:81 | Cite as

Comparative transcriptomics reveals potential genes involved in the vegetative growth of Morchella importuna

  • Wei Liu
  • Yingli Cai
  • Peixin HeEmail author
  • Lianfu Chen
  • Yinbing BianEmail author
Original Article

Abstract

True morels (Morchella spp.) are edible, medicinal mushrooms which have recently been artificially cultivated in China but stable production remains a problem. Here, we describe complete and comprehensive transcriptome of Morchella importuna at the stages of vegetative mycelium (VM), initial sclerotium (IS) and mature sclerotium (MS) by deep transcriptional sequencing and de novo assembly for the first time and which will potentially provide useful information for improving its cultivation. A total of 26,496 genes were identified with a contig N50 length of 1763 bp and an average length of over 1064 bp. Additionally, 11,957 open reading frames (ORFs) were predicted and 9676 of them (80.9%) were annotated. The 2605 differentially expressed genes (DEGs) identified by gene expression clustering were mainly involved with energy metabolism and could be divided into three broad clusters, of which genes in cluster_1 and cluster_2 were involved in the metabolic process of carbohydrate, polysaccharide, hydrolase, caprolactam, beta-galactosidase, and disaccharide, respectively. Genes in cluster_3 were the largest category, mainly identified with the catalytic activity and transporter activity. Overall, the enzymes involved in the carbohydrate metabolism were highly expressed, and the CAZyme (carbohydrate-active enzyme) genes were significantly expressed within cluster_3. For expression verification, 16 CAZYme genes were selected for qRT-PCR, and the results suggested that the catabolism of carbohydrates occurs mainly in the vegetative mycelium stage, and the anabolism of the energy-rich substances is the main event of mycelial growth and sclerotial morphogenesis of M. importuna.

Keyword

Morel Carbohydrate metabolism Differential expression analysis CAZYmes, qRT-PCR 

Notes

Acknowledgements

This study was supported by the Key Technologies R & D Program of Henan Province (No. 172102310553), the Major Technology Innovation Projects of Hubei Province (Grant No. 2016ABA100) and the Industry (Agriculture) Science and Technology Program (Grant No. 201503107).

Author contributions

WL and PH conceived and designed the experiments. YC and WL prepared the experiment materials. WL and YC carried out the experiments and collected the data. Data analysis was carried out by LC and WL. WL and PH wrote the manuscript. PH and YB provided intellectual input and revised the manuscript. All authors have read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13205_2019_1614_MOESM1_ESM.docx (627 kb)
Supplementary material 1 (DOCX 626 KB)

References

  1. Alvarado-Castillo G, Mata G, Tablada MEN, Martinez-Carrera D, Rosado DEP (2008) Obtaining sclerotia of morel mushrom (Morchella esculenta) in different culture media. Interciencia 33(7):528–531Google Scholar
  2. Alvarado-Castillo G, Mata G, Perez-Vazquez A, Martinez-Carrera D, Tablada MEN, Gallardo-Lopez F, Osorio-Acosta F (2011) Morchella sclerotia production through grain supplementation. Interciencia 36:768–773Google Scholar
  3. Amir R, Levanon D, Hadar Y, Chet I (1992) Formation of sclerotia by Morchella esculenta: relationship between media composition and turgor potential in the mycelium. Mycol Res 96(11):943–948.  https://doi.org/10.1016/S0953-7562(09)80595-9 CrossRefGoogle Scholar
  4. Amir R, Levanon D, Hadar Y, Chet I (1993) Morphology and physiology of Morchella esculenta during sclerotial formation. Mycol Res 97(6):683–689.  https://doi.org/10.1016/S0953-7562(09)80148-2 CrossRefGoogle Scholar
  5. Amir R, Levanon D, Hadar Y, Chet I (1994) The role of source-sink relationships in translocation during sclerotial formation by Morchella esculenta. Mycol Res 98(12):1409–1414.  https://doi.org/10.1016/S0953-7562(09)81071-X CrossRefGoogle Scholar
  6. Amir R, Levanon D, Hadar Y, Chet I (1995a) Factors affecting translocation and sclerotial formation in Morchella esculenta. Exp Mycol 19(1):61–70.  https://doi.org/10.1006/emyc.1995.1007 CrossRefGoogle Scholar
  7. Amir R, Steudle E, Levanon D, Hadar Y, Chet I (1995b) Turgor changes in Morchella esculenta during translocation and sclerotial formation. Exp Mycol 19(2):129–136.  https://doi.org/10.1006/emyc.1995.1015 CrossRefGoogle Scholar
  8. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brock TD (1951) Studies on the nutrition of Morchella esculenta Fries. Mycologia 43(4):402–422.  https://doi.org/10.2307/3755649 CrossRefGoogle Scholar
  10. Bunyard BA, Nicholson MS, Royse DJ (1995) Phylogenetic resolution of Morchella, Verpa, and Disciotis [Pezizales: Morchellaceae] based on restriction enzyme analysis of the 28S ribosomal RNA gene. Exp Mycol 19(3):223–233.  https://doi.org/10.1006/emyc.1995.1027 CrossRefPubMedGoogle Scholar
  11. Burge S, Kelly E, Lonsdale D, Mutowo-Muellenet P, McAnulla C, Mitchell A, Sangrador-Vegas A, Yong S-Y, Mulder N, Hunter S (2012) Manual GO annotation of predictive protein signatures: the InterPro approach to GO curation. Database  https://doi.org/10.1093/database/bar068 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Buscot F (1993) Synthesis of two types of association between Morchella esculenta and Picea abies under controlled culture conditions. J Plant Physiol 141(1):12–17.  https://doi.org/10.1016/S0176-1617(11)80845-X CrossRefGoogle Scholar
  13. Buscotand F, Kottke I (1990) The association of Morchella rotunda (Pers.) boudier with roots of Picea abies (L.) Karst. New Phytol 116(3):425–430.  https://doi.org/10.1111/j.1469-8137.1990.tb00528.x CrossRefGoogle Scholar
  14. Caddick MX, Brownlee AG, Arst HN Jr (1986) Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Mol Gen Genet 203:346–353.  https://doi.org/10.1007/BF00333978 CrossRefPubMedGoogle Scholar
  15. Calvo AM (2008) The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol 45(7):1053–1061.  https://doi.org/10.1016/j.fgb.2008.03.014 CrossRefPubMedGoogle Scholar
  16. Calvo AM, Bok J, Brooks W, Keller NP, Hinze LL, Gardner HW (2004) veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl Environ Microbiol 70:4733–4739.  https://doi.org/10.1128/AEM.70.8.4733-4739.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(suppl_1):D233–D238.  https://doi.org/10.1093/nar/gkn663 CrossRefPubMedGoogle Scholar
  18. Chen CB, Harel A, Gorovoits R, Yarden O, Dickman MB (2004) MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing. Mol Plant Microbe Interact 17:404–413.  https://doi.org/10.1094/MPMI.2004.17.4.404 CrossRefPubMedGoogle Scholar
  19. D’Souza CA, Alspaugh JA, Yue C, Harashima T, Cox GM, Perfect JR, Heitman J (2001) Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol 21(9):3179–3191.  https://doi.org/10.1128/MCB.21.9.3179-3191.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dahlstrom J, Smith J, Weber S N (2000) Mycorrhiza-like interaction by Morchella with species of the Pinaceae in pure culture synthesis,  https://doi.org/10.1007/PL00009992
  21. Duran RM, Cary JW, Calvo AM (2006) Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl Genet Mol Biotechnol 74:1158–1168.  https://doi.org/10.1007/s00253-006-0581-5 CrossRefGoogle Scholar
  22. Dürrenberger F, Wong K, Kronstad JW (1998) Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in Ustilago maydis. Proc Natl Acad Sci 95(10), 5684–5689.  https://doi.org/10.1073/pnas.95.10.5684 CrossRefGoogle Scholar
  23. Field A (2009) Discovering statistics using SPSS. Sage publications, LondonGoogle Scholar
  24. Fujimura KF, Smith JE, Horton TR, Weber NS, Spatafora JW (2005) Pezizalean mycorrhizas and sporocarps in ponderosa pine (Pinus ponderosa) after prescribed fires in eastern Oregon, USA. Mycorrhiza 15(2):79–86.  https://doi.org/10.1007/s00572-004-0303-8 CrossRefPubMedGoogle Scholar
  25. Gazis R, Kuo A, Riley R, LaButti K, Lipzen A, Lin J, Amirebrahimi M, Hesse CN, Spatafora JW, Henrissat B, Hainaut M, Grigoriev IV, Hibbett DS (2016) The genome of Xylona heveae provides a window into fungal endophytism. Fungal Biol 120(1):26–42.  https://doi.org/10.1016/j.funbio.2015.10.002 CrossRefPubMedGoogle Scholar
  26. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652.  https://doi.org/10.1038/nbt.1883 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between Protein and mRNA Abundance in Yeast. Mol Cell Biol 19(3):1720–1730.  https://doi.org/10.1128/mcb.19.3.1720 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hacquard S, Kracher B, Hiruma K, Munch PC, Garrido-Oter R, Thon MR, Weimann A, Damm U, Dallery JF, Hainaut M, Henrissat B, Lespinet O, Sacristan S, van Themaat E, Kemen E, McHardy AC, Schulze-Lefert P, O’Connell RJ (2016) Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nat Commun 7:11362.  https://doi.org/10.1038/ncomms11362 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Harel A, Gorovits R, Yarden O (2005) Changes in protein kinase A activity accompany sclerotial development in Sclerotinia sclerotiorum. Phytopathology 95(4):397–404.  https://doi.org/10.1094/PHYTO-95-0397 CrossRefPubMedGoogle Scholar
  30. He PX, Geng LJ, Mao DB, Xu CP (2012) Production, characterization and antioxidant activity of exopolysaccharides from submerged culture of Morchella crassipes. Bioproc Biosyst Eng 35(8):1325–1332.  https://doi.org/10.1007/s00449-012-0720-6 CrossRefGoogle Scholar
  31. He PX, Huang LN, Liu W, Liu SM, Cheng CK, Chen LT (2015a) Effects of cAMP on mycelial growth and sclerotial morphogenesis in Morchella crassipes. J Fungal Res 13(3):155–159Google Scholar
  32. He PX, Liu W, Cai YL, He XSH (2015b) Strain identification and phylogenetic analysis of cultivated and wild strains of Morchella belonging to Elata Clade in China. J Zhengzhou Univ Light Ind (Nat Sci) 30(3):26–29Google Scholar
  33. He PX, Wang K, Cai YL, Liu W (2017) Live cell confocal laser imaging studies on the nuclear behavior during meiosis and ascosporogenesis in Morchella importuna under artificial cultivation. Micron 101:108–113.  https://doi.org/10.1016/j.micron.2017.06.012 CrossRefPubMedGoogle Scholar
  34. He PX, Wang K, Cai YL, Hu XL, Zheng Y, Zhang JJ, Liu W (2018) Involvement of autophagy and apoptosis and lipid accumulation in sclerotial morphogenesis of Morchella importuna. Micron 109:34–40.  https://doi.org/10.1016/j.micron.2018.03.005 CrossRefPubMedGoogle Scholar
  35. Heleno SA, Stojkovic D, Barros L, Glamoclija J, Sokovic M, Martins A, Queiroz MJRP, Ferreira ICFR (2013) A comparative study of chemical composition, antioxidant and antimicrobial properties of Morchella esculenta (L.) Pers. from Portugal and Serbia. Food Res Int 51(1):236–243.  https://doi.org/10.1016/j.foodres.2012.12.020 CrossRefGoogle Scholar
  36. Hobbie EA, Weber NS, Trappe JM (2001) Mycorrhizal vs saprotrophic status of fungi: the isotopic evidence. New Phytol 150(3):601–610.  https://doi.org/10.1046/j.1469-8137.2001.00134.x CrossRefGoogle Scholar
  37. Hobbie EA, Rice SF, Weber NS, Smith JE (2016) Isotopic evidence indicates saprotrophy in post-fire Morchella in Oregon and Alaska. Mycologia 108(4):638–645.  https://doi.org/10.3852/15-281 CrossRefPubMedGoogle Scholar
  38. Jurick IIWM, Rollins JA (2007) Deletion of the adenylate cyclase (sac1) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. Fungal Genet Biol 44(6):521–530.  https://doi.org/10.1016/j.fgb.2006.11.005 CrossRefPubMedGoogle Scholar
  39. Kellner H, Luis P, Buscot F (2007) Diversity of laccase-like multicopper oxidase genes in Morchellaceae: identification of genes potentially involved in extracellular activities related to plant litter decay. Fems Microbiol Ecol 61(1):153–163.  https://doi.org/10.1111/j.1574-6941.2007.00322.x CrossRefPubMedGoogle Scholar
  40. Kiraly I, Czovek P (2007) Oxidative burst induced pseudosclerotium formation of Morchella steppicola Zerova on different malt agar media. Can J Microbiol 53(8):975–982.  https://doi.org/10.1139/W07-055 CrossRefPubMedGoogle Scholar
  41. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359.  https://doi.org/10.1038/nmeth.1923 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12(1):323.  https://doi.org/10.1186/1471-2105-12-323 CrossRefGoogle Scholar
  43. Littley ER, Rahe JE (1991) In vitro initiation of sclerotia of Sclerotium cepivorum. Can J Plant Path 13(1):45–49.  https://doi.org/10.1080/07060669109500964 CrossRefGoogle Scholar
  44. Liu W, Zhang Y, He PX (2017) Morel biology and cultivation. Jilin science and Technology Press, Changchun, pp 1–340Google Scholar
  45. Liu W, Chen LF, Cai YL, Zhang QQ, Bian YB (2018) Opposite polarity monospore genome de novo sequencing and comparative analysis reveal the possible heterothallic life cycle of Morchella importuna. Int J Mol Sci 19(9):2525.  https://doi.org/10.3390/ijms19092525 CrossRefPubMedCentralGoogle Scholar
  46. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  47. Maier T, Güell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583(24):3966–3973.  https://doi.org/10.1016/j.febslet.2009.10.036 CrossRefPubMedGoogle Scholar
  48. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury J-M, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun M-H, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033.  https://doi.org/10.1038/nature08867 CrossRefPubMedGoogle Scholar
  49. Miller RM, Liberta AE (1977) The effects of light and tyrosinase during sclerotium development in Sclerotium rolfsii Sacc. Can J Microbiol 23(3):278–287.  https://doi.org/10.1139/m77-041 CrossRefPubMedGoogle Scholar
  50. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35(suppl_2):W182–W185.  https://doi.org/10.1093/nar/gkm321 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Murat C, Díez J, Luis P, Delaruelle C, Dupré C, Chevalier G, Bonfante P, Martin F (2004) Polymorphism at the ribosomal DNA ITS and its relation to postglacial re-colonization routes of the Perigord truffle Tuber melanosporum. New Phytol 164(2):401–411.  https://doi.org/10.1111/j.1469-8137.2004.01189.x CrossRefGoogle Scholar
  52. Ower R (1982) Notes on the Development of the Morel Ascocarp: Morchella esculenta. Mycologia 74(1):142–144.  https://doi.org/10.2307/3792639 CrossRefGoogle Scholar
  53. Ower RD, Mills GL, Malachowski JA (1986) Cultivation of Morchella. U.S. Patent No. 4,594,809. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  54. Ower RD, Mills GL, Malachowski JA (1988) Cultivation of Morchella. U.S. Patent No. 4,757,640. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  55. Ower RD, Mills GL, Malachowski JA (1989) Cultivation of Morchella. U.S. Patent No. 4,866,878. Patent and Trademark Office, Washington, DCGoogle Scholar
  56. Palma C, Kiraly I (2011) Inducible trehalase enzyme activity of Morchella conica Persoon mycelium. Acta Microbiol Imm H 58(1):1–11.  https://doi.org/10.1556/AMicr.58.2011.1.1 CrossRefGoogle Scholar
  57. Pilz D, McLain R, Alexander S, Villarreal-Ruiz L, Berch S, Wurtz TL, Smith JE (2007) Ecology and management of morels harvested from the forests of western North America. Gen. Tech. Rep. PNW-GTR-710. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, PortlandGoogle Scholar
  58. Pion M, Spangenberg JE, Simon A, Bindschedler S, Flury C, Chatelain A, Bshary R, Job D, Junier P (2013) Bacterial farming by the fungus Morchella crassipes. P Roy Soc B Biol Sci  https://doi.org/10.1098/rspb.2013.2242 CrossRefGoogle Scholar
  59. Punja ZK (1985) The biology, ecology, and control of Sclerotium rolfsh. Ann Rev Phytopathol 23(1):97–127.  https://doi.org/10.1146/annurev.py.23.090185.000525 CrossRefGoogle Scholar
  60. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140.  https://doi.org/10.1093/bioinformatics/btp616 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rollins JA, Dickman MB (1998) Increase in endogenous and exogenous cyclic AMP levels inhibits sclerotial development in Sclerotinia sclerotiorum. Appl Environ Microbiol 64(7):2539–2544PubMedPubMedCentralGoogle Scholar
  62. Rollins JA, Dickman MB (2001) pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Appl Environ Microbiol 67:75–81.  https://doi.org/10.1128/AEM.67.1.75-81.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rossbach M, Kummerle E, Schmidt S, Gohmert M, Stieghorst C, Revay Z, Wiehl N (2017) Elemental analysis of Morchella esculenta from Germany. J Radioanal Nucl Ch 313(1):273–278.  https://doi.org/10.1007/s10967-017-5298-7 CrossRefGoogle Scholar
  64. Sanders SM, Cartwright P (2015) Interspecific differential expression analysis of RNA-Seq data yields insight into life cycle variation in Hydractiniid hydrozoans. Genome Biol Evol 7(8):2417–2431.  https://doi.org/10.1093/gbe/evv153 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212.  https://doi.org/10.1093/bioinformatics/btv351 CrossRefPubMedGoogle Scholar
  66. Stark C, Babik W, Durka W (2009) Fungi from the roots of the common terrestrial orchid Gymnadenia conopsea. Mycol Res 113(Pt 9):952–959.  https://doi.org/10.1016/j.mycres.2009.05.002 CrossRefPubMedGoogle Scholar
  67. Stott K, Mohammed C (2004) Specialty mushroom production systems: maitake and morels. RIRDC, AustraliaGoogle Scholar
  68. Su CA, Xu XY, Liu DY, Wu M, Zeng FQ, Zeng MY, Wei W, Jiang N, Luo X (2013) Isolation and characterization of exopolysaccharide with immunomodulatory activity from fermentation broth of Morchella conica. DARU  https://doi.org/10.1186/2008-2231-21-5 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tan F (2016) The history, current situation and prospect of artificial cultivation of morels. Edible Med Mushrooms 24(3):140–144Google Scholar
  70. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4(1):41.  https://doi.org/10.1186/1471-2105-4-41 CrossRefGoogle Scholar
  71. Tietel Z, Masaphy S (2018) Aroma-volatile profile of black morel (Morchella importuna) grown in Israel. J Sci Food Agr 98(1):346–353.  https://doi.org/10.1002/jsfa.8477 CrossRefGoogle Scholar
  72. Traeger S, Altegoer F, Freitag M, Gabaldon T, Kempken F, Kumar A, Marcet-Houben M, Poggeler S, Stajich JE, Nowrousian M (2013) The genome and development-dependent transcriptomes of Pyronema confluens: a window into fungal evolution. PLoS Genet 9(9):e1003820.  https://doi.org/10.1371/journal.pgen.1003820 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13(1):36–46.  https://doi.org/10.1038/nrg3117 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Vieira V, Fernandes A, Barros L, Glamoclija J, Ciric A, Stojkovic D, Martins A, Sokovic M, Ferreira ICFR (2016) Wild Morchella conica Pers. from different origins: a comparative study of nutritional and bioactive properties. J Sci Food Agr 96(1):90–98.  https://doi.org/10.1002/jsfa.7063 CrossRefGoogle Scholar
  75. Volk TJ, Leonard TJ (1989) Physiological and Environmental Studies of sclerotium formation and maturation in isolates of Morchella crassipes. Appl Environ Microbiol 55(12):3095–3100PubMedPubMedCentralGoogle Scholar
  76. Volk TJ, Leonard TJ (1990) Cytology of the life-cycle of Morchella. Mycol Res 94(3):399–406.  https://doi.org/10.1016/S0953-7562(09)80365-1 CrossRefGoogle Scholar
  77. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138.  https://doi.org/10.1093/bioinformatics/btp612 CrossRefPubMedGoogle Scholar
  78. Xu HB, Luo X, Qian J, Pang XH, Song JY, Qian GR,.Chen JH, Chen S (2012) FastUniq: a fast de novo duplicates removal tool for paired short reads. PloS one 7(12):e52249.  https://doi.org/10.1371/journal.pone.0052249 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yager LN (1992) Early developmental events during asexual and sexual sporulation in Aspergillus nidulans. Biotechnology 23:19–41PubMedGoogle Scholar
  80. Yang J, Wang L, Ji X, Feng Y, Li X, Zou C, Xu J, Ren Y, Mi Q, Wu J, Liu S, Liu Y, Huang X, Wang H, Niu X, Li J, Liang L, Luo Y, Ji K, Zhou W, Yu Z, Li G, Liu Y, Li L, Qiao M, Feng L, Zhang KQ (2011) Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 7(9):e1002179.  https://doi.org/10.1371/journal.ppat.1002179 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhang QQ, Liu W, Cai YL, Lan AF, Bian YB (2018) Validation of internal control genes for quantitative real-time PCR gene expression analysis in Morchella. Molecules 23(9):2331.  https://doi.org/10.3390/molecules23092331 CrossRefPubMedCentralGoogle Scholar
  82. Zhao X, Spraker JE, Bok JW, Velk T, He ZM, Keller NP (2017) A cellular fusion cascade regulated by laea is required for sclerotial development in Aspergillus flavus. Front Microbiol, 8, 1925.  https://doi.org/10.3389/fmicb.2017.01925

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Institute of Applied MycologyHuazhong Agricultural UniversityWuhanChina
  2. 2.Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
  3. 3.Institute of VegetableWuhan Academy of Agricultural SciencesWuhanChina
  4. 4.School of Food and Biological EngineeringZhengzhou University of Light IndustryZhengzhouChina

Personalised recommendations