Advertisement

3 Biotech

, 9:74 | Cite as

First high-quality draft genome of Ochrobactrum haematophilum P6BS-III, a highly glyphosate-tolerant strain isolated from agricultural soil in Argentina

  • Francisco Massot
  • Panagiotis Gkorezis
  • Breanne McAmmond
  • Jan d’Haen
  • Jonathan Van Hamme
  • Luciano J. Merini
  • Jaco Vangronsveld
  • Sofie ThijsEmail author
Genome Reports
  • 6 Downloads

Abstract

We report here on a high-quality draft genome sequence of Ochrobactrum haematophilum strain P6BS-III (DSM 106071), a Gram negative, non-sporulating bacterium isolated from a pastureland (Buenos Aires province, Argentina) which had been chronically exposed to the herbicide glyphosate. The genome of 5.25 Mb with a DNA G+C content of 56.63% size was estimated to contain 5,291 protein coding genes and 57 RNA genes. Genome analysis revealed the presence of the phn operon, which is involved in the phosphonate degradation pathway, and a class II 5-enolpyruvylshikimate-3-phosphate synthase (EPSP) that confers tolerance to glyphosate. Genes related to plant growth promotion traits are also present, and include genes for phosphorus metabolism, calcium phosphate and phytate solubilization, siderophore production, organic acid biosynthesis and indole acetic acid (IAA) production.

Keywords

Glyphosate Ochrobactrum haematophilum 5-Enolpyruvylshikimate-3-phosphate synthase Soil contamination Plant growth promotion 

Abbreviations

EPSP

5-Enolpyruvylshikimate-3-phosphate

LB

Luria–Bertani

COG

Clusters of orthologous genes

Notes

Acknowledgements

FM is supported through the joint PhD BOF program of Hasselt University and together with ST financially supported by the Methusalem project 08M03VGRJ. BM and JVH are supported by the Natural Sciences and Engineering Research Council of Canada.

References

  1. Abraham J, Silambarasan S (2016) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: a proposal of its metabolic pathway. Pestic Biochem Physiol 126:13–21.  https://doi.org/10.1016/j.pestbp.2015.07.001 CrossRefPubMedGoogle Scholar
  2. An R, Moe LA (2016) Regulation of PQQ-dependent glucose dehydrogenase activity in the model rhizosphere dwelling bacterium Pseudomonas putida KT2440. Appl Environ Microbiol 82:AEM.00813-16.  https://doi.org/10.1128/AEM.00813-16
  3. Arndt D, Grant JR, Marcu A et al (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21.  https://doi.org/10.1093/nar/gkw387 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477.  https://doi.org/10.1089/cmb.2012.0021 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chaudhari NM, Gupta VK, Dutta C (2016) BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 6:24373.  https://doi.org/10.1038/srep24373 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cockerill FR, Wilker MA, Alder J et al (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard—Ninth Edition. Wayne, PAGoogle Scholar
  7. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.  https://doi.org/10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  8. Ermakova IT, Shushkova TV, Leont’evskii a. a. (2008) Microbial degradation of organophosphonates by soil bacteria. Microbiology 77:615–620.  https://doi.org/10.1134/S0026261708050160
  9. Finn RD, Clements J, Arndt W et al (2015) HMMER web server: 2015 Update. Nucleic Acids Res 43:W30–W38.  https://doi.org/10.1093/nar/gkv397 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Goris J, Konstantinidis KT, Klappenbach JA et al (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91.  https://doi.org/10.1099/ijs.0.64483-0 CrossRefPubMedGoogle Scholar
  11. Green JM (2016) The rise and future of glyphosate and glyphosate-resistant crops. Pest Manag Sci 74:1035–1039.  https://doi.org/10.1002/ps.4462 CrossRefPubMedGoogle Scholar
  12. Guyton KZ, Loomis D, Grosse Y et al (2015) Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol 16:490–491.  https://doi.org/10.1016/S1470-2045(15)70134-8 CrossRefPubMedGoogle Scholar
  13. Healy-Fried ML, Funke T, Priestman M et al (2007) Structural basis of glyphosate tolerance resulting from mutations of Pro101 in Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase. J Biol Chem 282:32949–32955.  https://doi.org/10.1074/jbc.M705624200 CrossRefPubMedGoogle Scholar
  14. Huang Y, Niu B, Gao Y et al (2010) CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics 26:680–682.  https://doi.org/10.1093/bioinformatics/btq003 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Huerta-Cepas J, Forslund K, Szklarczyk D et al (2016) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. bioRxiv.  https://doi.org/10.1101/076331
  16. Jäckel C, Hertwig S, Scholz HC et al (2017) Prevalence, host range, and comparative genomic analysis of temperate Ochrobactrum phages. Front Microbiol 8:1–16.  https://doi.org/10.3389/fmicb.2017.01207 CrossRefGoogle Scholar
  17. Jorquera MA, Hernández MT, Rengel Z et al (2008) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025.  https://doi.org/10.1007/s00374-008-0288-0 CrossRefGoogle Scholar
  18. Kampfer P, Scholz HC, Huber B et al (2007) Ochrobactrum haematophilum sp. nov. and Ochrobactrum pseudogrignonense sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 57:2513–2518.  https://doi.org/10.1099/ijs.0.65066-0 CrossRefPubMedGoogle Scholar
  19. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes11Edited by F. Cohen. J Mol Biol 305:567–580.  https://doi.org/10.1006/jmbi.2000.4315 CrossRefPubMedGoogle Scholar
  20. Kurtz S, Phillippy A, Delcher AL et al (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12.  https://doi.org/10.1186/gb-2004-5-2-r12 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf 14:60.  https://doi.org/10.1186/1471-2105-14-60 CrossRefGoogle Scholar
  22. Nautiyal CS (1999) An eficiente microbiological growth médium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270CrossRefGoogle Scholar
  23. Overbeek R, Olson R, Pusch GD et al (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:206–214.  https://doi.org/10.1093/nar/gkt1226 CrossRefGoogle Scholar
  24. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801.  https://doi.org/10.1128/AEM.68.8.3795 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Pearson WR (2013) An introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinforma 1–8.  https://doi.org/10.1002/0471250953.bi0301s42
  26. Petersen TN, Brunak S, Von Heijne G, Nielsen H (2011) SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786.  https://doi.org/10.1038/nmeth.1701 CrossRefPubMedGoogle Scholar
  27. Pollegioni L, Schonbrunn E, Siehl D (2011) Molecular basis of glyphosate resistance—different approaches through protein engineering. FEBS J 278:2753–2766.  https://doi.org/10.1111/j.1742-4658.2011.08214.x CrossRefPubMedPubMedCentralGoogle Scholar
  28. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2015) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931.  https://doi.org/10.1093/bioinformatics/btv681 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Schwyn B, Neilands JB (1987) Universal assay for the detection and determination of siderophores. Anal Biochem 160:47–56.  https://doi.org/10.1016/0003-2697(87)90612-9 CrossRefPubMedGoogle Scholar
  30. Tatusova T, Dicuccio M, Badretdin A et al (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624.  https://doi.org/10.1093/nar/gkw569 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Vallenet D, Labarre L, Rouy Z et al (2006) MaGe: A microbial genome annotation system supported by synteny results. Nucleic Acids Res 34:53–65.  https://doi.org/10.1093/nar/gkj406 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Vangronsveld J, Herzig R, Weyens N et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794.  https://doi.org/10.1007/s11356-009-0213-6 CrossRefGoogle Scholar
  33. Williams T, Kelley C (2011) Gnuplot 4.4. 1–225Google Scholar
  34. Yi S, Cui Y, Zhao Y et al (2016) A novel naturally occurring class I 5-Enolpyruvylshikimate-3-phosphate synthase from Janibacter sp. confers high glyphosate tolerance to rice. Sci Rep 6:19104.  https://doi.org/10.1038/srep19104 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Yu H, Li Y, Tang H, Xu P (2014) Genome sequence of a newly isolated nicotine-degrading bacterium, Ochrobactrum sp. SJY1. Genome Announc 2:5541–5542.  https://doi.org/10.1128/genomeA.00720-14 CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Department of Biology, Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
  2. 2.Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Biotecnología, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Instituto de Nanobiotecnología (NANOBIOTEC)CONICET-Universidad de Buenos AiresBuenos AiresArgentina
  4. 4.Department of Biological SciencesThompson Rivers UniversityKamloopsCanada
  5. 5.Laboratorio de Malezas y HerbicidasEEA Anguil-INTA- CONICETLa PampaArgentina
  6. 6.Institute for Material Research (IMO-IMEC)Hasselt UniversityDiepenbeekBelgium

Personalised recommendations