3 Biotech

, 9:64 | Cite as

In vivo and in vitro effects on cholinesterase of blood of Oreochromis mossambicus by copper

  • Ain Aqilah Basirun
  • Siti Aqlima Ahmad
  • Mohd Khalizan Sabullah
  • Nur Adeela Yasid
  • Hassan Mohd Daud
  • Ariff Khalid
  • Mohd Yunus ShukorEmail author
Original Article


The present study is aimed to evaluate the effects of sub-acute toxicity testing of copper sulphate (CuSO4), on behavioural, histological and biochemical changes of the Oreochromis mossambicus (black tilapia) blood tissues. The effects were assessed according to the previous results on sub-acute toxicity test after exposing fish to several concentrations (0.0, 2.5, 5.0, and 10.0 mg/L). The observations of scanning electron microscope, and transmission electron microscope studies revealed severe histopathological changes on the surface and the cellular changes in blood tissues, respectively. The morphological alterations in blood involved irregular structure of red blood cell and blood clot formation. CuSO4 affected the biochemical alteration of the blood cholinesterase also known as serum cholinesterase (ChE). Blood ChE inhibited up to 80% of activity when exposed to 10.0 mg/L CuSO4. The findings from this study can further improve the quality standards of aquaculture industry and the fundamental basis in selecting suitable strains among freshwater fish species to be used as bioindicator.


Acute toxicology Blood Copper contamination Cholinesterase Oreochromis mossambicus 



This research is supported by the funding of the Grants from Putra-IPS Grant (9481400), Putra-IPS Grant (934700), and Graduate Research Fellowship Universiti Putra Malaysia.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.


  1. Acosta DS, Danielle NM, Altenhofen S, Luzardo MD, Costa PG, Bianchini A, Bonan CD, da Silva RS, Dafre AL (2016) Copper at low levels impairs memory of adult zebrafish (Danio rerio) and affects swimming performance of larvae. Comp Biochem Physiol C Pharmacol 185–186:122–130Google Scholar
  2. Ahmad S, Sabullah M, Basirun A, Khalid A, Iqbal I, Shamaan N, Syed M, Shukor M (2016a) Evaluation of cholinesterase from the muscle and blood of Anabas testudineus as detection of metal ions. Fresenius Environ Bull 25:4253–4260Google Scholar
  3. Ahmad SA, Sabullah MK, Shamaan NA, Shukor MYA, Jirangon H, Khalid A, Syed MA (2016b) Evaluation of acetylcholinesterase source from fish, Tor tambroides for detection of carbamate. J Environ Biol 37:479–484PubMedGoogle Scholar
  4. Ahmad SA, Wong YF, Shukor MY, Sabullah MK, Yasid NA, Hayat NM, Shamaan NA, Khalid A, Syed MA (2016c) An alternative bioassay using Anabas testudineus (Climbing perch) cholinesterase for metal ions detection. Int Food Res J 23:1446–1452Google Scholar
  5. Ali MF, Heng LY, Ratnam W, Nais J, Ripin R (2004) Metal distribution and contamination of the Mamut River, Malaysia, caused by copper mine discharge. Bull Environ Contam Toxicol 73:535–542. CrossRefPubMedGoogle Scholar
  6. Ali BNM, Lin CY, Cleophas F, Abdullah MH, Musta B (2014) Assessment of heavy metals contamination in Mamut river sediments using sediment quality guidelines and geochemical indices. Environ Monit Assess 187(1):4190–4201Google Scholar
  7. Allan D, Billah MM, Finean JB, Michell RH (1976) Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular (Ca2+). Nature 261:58–60CrossRefGoogle Scholar
  8. Augustinsson K-B (1961) Multiple forms of esterase in vertebrate blood plasma. Ann N Y Acad Sci 94:844–860CrossRefGoogle Scholar
  9. Basirun AA, Ahmad SA, Yasid NA, Sabullah MK, Daud HM, Sha’arani S, Khalid A, Shukor MY (2018) Toxicological effects, behavioural and biochemical responses of Oreochromis mossambicus gills and its cholinesterase by copper. Int J Environ Sci Technol. CrossRefGoogle Scholar
  10. Bonacci S, Browne MA, Dissanayake A, Hagger JA, Corsi I, Focardi S, Galloway TS (2004) Esterase activities in the bivalve mollusc Adamussium colbecki as a biomarker for pollution monitoring in the Antarctic marine environment. Mar Pollut Bull 49:445–455. CrossRefPubMedGoogle Scholar
  11. Bose MTJ, Ilavazhahan M, TamilselvI R, Viswanathan M (2013) Effect of heavy metals on the histopathology of gills and brain of fresh water fish Catla catla. Biomed Pharmacol J 6:99–105CrossRefGoogle Scholar
  12. Bratosin D, Fagadar-Cosma E, Gheorghe A-M et al (2011) In vitro toxi—and ecotoxicological assessment of porphyrine nanomaterials by flow cytometry using nucleated erythrocytes. Carpath J Earth Environ Sci 6:225–234Google Scholar
  13. Dew WA, Wood CM, Pyle GG (2012) Effects of continuous copper exposure and calcium on the olfactory response of fathead minnows. Environ Sci Technol 46:9019–9026. CrossRefPubMedGoogle Scholar
  14. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. CrossRefPubMedGoogle Scholar
  15. Ezeonyejiaku CD, Obiakor MO, Ezenwelu CO (2011) Toxicity of copper sulphate and behavioral locomotor response of tilapia (Oreochromis niloticus) and catfish (Clarias gariepinus) species. Online J Anim Feed Res (OJAFR) 1:130–134Google Scholar
  16. Gandhewar SS, Zade SB, Sitre SR (2014) Assessment of toxic potential of three different heavy metals to Clarias batrachus (Linn.) utilizing static acute bioassay. J Appl Nat Sci 6(1):117–120. CrossRefGoogle Scholar
  17. Ghazala MS, Ahmad L, Sultana S, Alghanim K, Al-Misned F, Ahmad Z (2014) Fish cholinesterases as biomarkers of sublethal effects of organophosphorus and carbamates in tissues of Labeo rohita. J Biochem Mol Toxicol 28:137–142. CrossRefPubMedGoogle Scholar
  18. Gomes IDL, Lemos MFL, Soares AMVM, Barata C, Faria M (2014) The use of cholinesterase as potential biomarker: in vitro characterization in the polychaete Capitella teleta. Mar Pollut Bull 85:179–185. CrossRefPubMedGoogle Scholar
  19. Hayat NM, Shamaan NA, Sabullah MK, Shukor MY, Syed MA, Khalid A, Dahalan FA, Ahmad SA (2016) The use of Lates calcarifer as a biomarker for heavy metals detection. Rendiconti Lincei 27:463–472. CrossRefGoogle Scholar
  20. Hayat N, Ahmad S, Shamaan N, Sabullah M, Syed M, Khalid A, Khalil K, Dahalan F (2017) Characterisation of cholinesterase from kidney tissue of Asian seabass Lates calcarifer and its inhibition in presence of metal ions. J Environ Biol 38:381–388CrossRefGoogle Scholar
  21. Ibemenuga KN (2016) Bioaccumulation and toxic effects of some heavy metals in freshwater fishes. Anim Res Int 10:1792–1798Google Scholar
  22. Ismail I, Mat Saleh I (2012) Analysis of heavy metals in water and fish (Tilapia sp.) samples from Tasik Mutiara, Puchong. Malays J Anal Sci 16:346–352Google Scholar
  23. Ivanov I, Matafonov A, Sun M, Cheng Q, Dickeson SK, Verhamme IM, Emsley J, Gailani D (2017) Proteolytic properties of single-chain factor XII: a mechanism for triggering contact activation. Blood. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kumar M, Kumar D, Kumar R (2017) Sublethal effects of cadmium and copper on the blood characteristics of catfish Clarias batrachus (Linn.). Int J Adv Res Biol Sci 4:123–128CrossRefGoogle Scholar
  25. Lopes RM, Filho MVS, de Salles JB, Bastos VLFC, Bastos JC (2014) Cholinesterase activity of muscle tissue from freshwater fishes: characterization and sensitivity analysis to the organophosphate methyl-paraoxon: ChE activity of muscle tissue from freshwater fishes. Environ Toxicol Chem 33:1331–1336. CrossRefPubMedGoogle Scholar
  26. Lu Y, Wu Z, Song Z, Xiao P, Liu Y, Zhang P, You F (2016) Insight into the heat resistance of fish via blood: effects of heat stress on metabolism, oxidative stress and antioxidant response of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus. Fish Shellfish Immunol 58:125–135. CrossRefPubMedGoogle Scholar
  27. Mashifane TB, Moyo NAG (2014) Acute toxicity of selected heavy metals to Oreochromis mossambicus fry and fingerlings. Afr J Aquat Sci 39:279–285. CrossRefGoogle Scholar
  28. Nunes B (2011) The use of cholinesterases in ecotoxicology. Rev Environ Contam Toxicol 212:29–59. CrossRefPubMedGoogle Scholar
  29. Nussey G, Van Vuren JHJ, Preez HH, Du (1995) Effect of copper on blood coagulation of Oreochromis mossambicus (Cichlidae). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 111:359–367. CrossRefPubMedGoogle Scholar
  30. Ott P, Hope MJ, Verkleij AJ, Roelofsen B, Brodbeck U, Van Deenen LL (1981) Effect of dimyristol phosphotidyl choline on intact erythrocyte; release of spectrin-free vesicle without ATP depletion. Biochem Biophys Acta 641:79–87CrossRefGoogle Scholar
  31. Padrilah SN, Ahmad SA, Yasid NA, Sabullah MK, Daud HM, Khalid A, Shukor MY (2017) Toxic effects of copper on liver and cholinesterase of Clarias gariepinus. Environ Sci Pollut Res Int. CrossRefPubMedGoogle Scholar
  32. Privitera G, Meli G (2016) An unusual cause of anemia in cirrhosis: spur cell anemia, a case report with review of literature. Gastroenterol Hepatol Bed Bench 9:335–339PubMedPubMedCentralGoogle Scholar
  33. Sabullah M, Ahmad S, Hussain J, Gansau A, Sulaiman M (2014a) Acute effect of copper on Puntius javanicus survival and a current opinion for future biomarker development. J Environ Bioremediat Toxicol 2:28–32Google Scholar
  34. Sabullah M, Ahmad S, Shukor M, Syed M, Shamaan N (2014b) The evaluation of Periophtalmodon schlosseri as a source of acetylcholinesterase for the detection of insecticides. Bull Environ Sci Manag 1:20–24Google Scholar
  35. Sabullah M, Ahmad S, Sulaiman M, Shukor M, Syed M, Shamaan N (2014c) The development of an inhibitive assay for heavy metals using the acetylcholinesterase from Periophtalmodon schlosseri. J Environ Bioremediat Toxicol 1:20–24Google Scholar
  36. Sabullah MK, Shukor MY, Sulaiman MR, Shamaan NA, Syed MA, Khalid A, Ahmad SA (2014d) The effect of copper on the ultrastructure of Puntius javanicus hepatocyte. Aust J Basic Appl Sci 8:245–251Google Scholar
  37. Sabullah MK, Sulaiman MR, Shukor MYA, Syed MA, Shamaan NA, Khalid A, Ahmad SA (2014e) The assessment of cholinesterase from the liver of Puntius javanicus as detection of metal ions. Sci World J. CrossRefGoogle Scholar
  38. Sabullah MK, Ahmad SA, Shukor MY, Shamaan NA, Khalid A, Gansau AJ, Dahalan FA, Sulaiman MR (2015a) Acetylcholinesterase from Puntius javanicus for the detection of carbamates and organophosphates. J Chem Pharm Sci 8:348–353Google Scholar
  39. Sabullah MK, Shukor MYA, Shamaan NA, Khalid A, Ganzau AJ, Sulaiman MR, Jirangon H, Ahmad SA (2015b) Purification and anticholinesterase sensitivity of cholinesterase extracted from liver tissue of Puntius Javanicus. ResearchGate. CrossRefGoogle Scholar
  40. Sabullah MK, Sulaiman MR, Shukor MYA, Shamaan NA, Khalid A, Ahmad SA (2015c) In vitro and in vivo effects of Puntius javanicus cholinesterase by copper. Fresenius Environ Bull 24:4615–4621Google Scholar
  41. Sabullah MK, Abd. Shukor MY, Shamaan NA, Khalid A, Ganzau AJ, Sulaiman MR, Jirangon H, Ahmad SA (2015d) Purification and anticholinesterase sensitivity of cholinesterase extracted from liver tissue of Puntius javanicus. Int J Agric Biol 17:1025–1030. CrossRefGoogle Scholar
  42. Sandrini JZ, Rola RC, Lopes FM et al (2013) Effects of glyphosate on cholinesterase activity of the mussel Perna perna and the fish Danio rerio and Jenynsia multidentata: in vitro studies. Aquat Toxicol 130–131:171–173. CrossRefPubMedGoogle Scholar
  43. Talesa V, Grauso M, Principato GB, Giovannini E, Norton SJ, Rosi G (1994) Presence of soluble tetrameric (blood) and membrane-bound dimeric forms of cholinesterase in the mollusk Murex brandaris (Gastropoda: Neogastropoda). J Exp Zool 270:233–244. CrossRefGoogle Scholar
  44. Van Der Ent A, Edraki M (2016) Environmental geochemistry of the abandoned Mamut Copper Mine (Sabah) Malaysia. Environ Geochem Health. CrossRefPubMedGoogle Scholar
  45. Wong SK, Zhang X-H, Woo NYS (2012) Vibrio alginolyticus thermolabile hemolysin (TLH) induces apoptosis, membrane vesiculation and necrosis in sea bream erythrocytes. Aquaculture 330–333:29–36. CrossRefGoogle Scholar
  46. Zhou Q, Zhang J, Fu J, Shi J, Jiang G (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150. CrossRefPubMedGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Faculty of Science and Natural ResourcesUniversiti Malaysia SabahKota KinabaluMalaysia
  3. 3.Department of Veterinary Laboratory Diagnostic, Faculty of Veterinary MedicineUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Faculty of Health SciencesUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia

Personalised recommendations