Advertisement

3 Biotech

, 9:68 | Cite as

Nanomaterials and microbes’ interactions: a contemporary overview

  • Jaspreet Singh
  • Kanchan Vishwakarma
  • Naleeni Ramawat
  • Padmaja Rai
  • Vivek Kumar Singh
  • Rohit Kumar Mishra
  • Vivek Kumar
  • Durgesh Kumar TripathiEmail author
  • Shivesh SharmaEmail author
Review Article
  • 16 Downloads

Abstract

Use of nanomaterials in the field of science and technology includes different fields in food industry, medicine, agriculture and cosmetics. Nanoparticle-based sensors have wide range of applications in food industry for identification and detection of chemical contaminants, pathogenic bacteria, toxins and fungal toxins from food materials with high specificity and sensitivity. Nanoparticle–microbe interactions play a significant role in disease treatment in the form of antimicrobial agents. The inhibitory mechanism of nanoparticles against different bacteria and fungi includes release of metal ions that interacts with cellular components through various pathways including reactive oxygen species (ROS) generation, pore formation in cell membranes, cell wall damage, DNA damage, and cell cycle arrest and ultimately inhibits the growth of cells. Nanoparticle-based therapies are growing to study the therapeutic treatments of plant diseases and to prevent the growth of phytopathogens leading to the growing utilization of engineered nanomaterials. Hence, with this background, the present review focuses thoroughly on detailed actions and responses of nanomaterials against different bacteria and fungi as well as food sensing and storage.

Keywords

Nanomaterials Bacteria Fungi Mechanism of action 

Notes

Acknowledgements

The authors are grateful to Director MNNIT Allahabad, Central Instrumentation Facility under Department of Biotechnology, and Design and Innovation Centre, MNNIT Allahabad, Prayagraj for providing necessary research facilities. Shivesh Sharma and Durgesh K. Tripathi are thankful for the financial assistance provided by CSIR sponsored project (No. 38(1460)/18/EMR-II).

Compliance with ethical standards

Conflict of interest

Authors declared that they do not have any conflict of interest.

References

  1. Abdal-Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, Choi HY, Cho SG (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci. 18(1):120CrossRefGoogle Scholar
  2. Ahmed A, Khan AK, Anwar A et al (2016) Biofilm inhibitory effect of chlorhexidine conjugated gold nanoparticles against Klebsiella pneumoniae. Microb Pathog.  https://doi.org/10.1016/j.micpath.2016.06.016 CrossRefPubMedGoogle Scholar
  3. Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains. Int J Nanomed 7:3527CrossRefGoogle Scholar
  4. Bajpai VK, Kamle M, Shukla S et al (2018) Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal.  https://doi.org/10.1016/j.jfda.2018.06.011 CrossRefPubMedGoogle Scholar
  5. Bansal V, Ahmad A, Sastry M (2006a) Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica. J Am Chem Soc 128(43):14059–14066CrossRefGoogle Scholar
  6. Bansal V, Poddar P, Ahmad A. Sastry M (2006b) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128(36):11958–11963CrossRefGoogle Scholar
  7. Bondarenko O, Juganson K, Ivask A et al (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200.  https://doi.org/10.1007/s00204-013-1079-4 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45(7–8):466–472.  https://doi.org/10.1016/j.exger.2010.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chatterjee S, Bandyopadhyay A, Sarkar K (2011) Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnol 9(1):34.  https://doi.org/10.1186/1477-3155-9-34 CrossRefGoogle Scholar
  10. Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13):135101.  https://doi.org/10.1088/0957-4484/25/13/135101 CrossRefPubMedGoogle Scholar
  11. Chen SH, Wu VCH, Chuang YC, Lin CS (2008) Using Oligonucleotide-functionalized Au nano particles to rapidly detect food borne pathogens on a piezoelectric biosensor. J Microbiol Meth 73:7–17.  https://doi.org/10.1016/j.mimet.2008.01.004 CrossRefGoogle Scholar
  12. De La Torre-Roche R, Hawthorne J, Deng Y et al (2013) Multiwalled carbon nanotubes and c60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47(21):12539–12547.  https://doi.org/10.1021/es4034809 CrossRefGoogle Scholar
  13. Deryabin DG, Aleshina ES, Vasilchenko AS et al (2013) Investigation of copper nanoparticles antibacterial mechanisms tested by luminescent Escherichia coli strains. Nanotechnol Russ 8(5–6):402–408.  https://doi.org/10.1134/S1995078013030063 CrossRefGoogle Scholar
  14. Devi JS, Bhimba BV (2014) Antibacterial and antifungal activity of silver nanoparticles synthesized using Hypnea muciformis. Biosci Biotechnol Res Asia 11(1):235–238.  https://doi.org/10.13005/bbra/1260 CrossRefGoogle Scholar
  15. Diaz-Visurraga J, Cardenas G, Garcia A (2010) Morphological changes induced in bacteria as evaluated by electron microscopy. In: Mendez-Vilas A, Diaz J (eds) Microscopy science, technology, applications. Formatex, Madrid, SpainGoogle Scholar
  16. Dimkpa CO, Mclean JE, Britt DW, Anderson AJ (2012) CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, Pseudomonas chlororaphis O6. Nanotoxicology 6(6):635–642.  https://doi.org/10.3109/17435390.2011.598246 CrossRefPubMedGoogle Scholar
  17. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26(6):913–924CrossRefGoogle Scholar
  18. Du L, Jiang H, Liu X et al (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9(5):1165–1170.  https://doi.org/10.1016/j.elecom.2007.01.007 CrossRefGoogle Scholar
  19. Du WL, Xu YL, Xu ZR, Fan CL (2008) Preparation, characterization and antibacterial properties against Escherichia coli K88 of chitosan nanoparticle loaded copper ions. Nanotechnology 19(8):085707–085712.  https://doi.org/10.1088/0957-4484/19/8/085707 CrossRefPubMedGoogle Scholar
  20. Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8(1):103–108CrossRefGoogle Scholar
  21. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24.  https://doi.org/10.1016/j.jcis.2011.07.017 CrossRefPubMedGoogle Scholar
  22. Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2016) Understanding the role of nanomaterials in agriculture. InMicrobial Inoculants in Sustainable Agricultural Productivity 2016. Springer, New Delhi, pp 271–288Google Scholar
  23. Emamifar A, Kadivar M, Shahedi M et al (2010) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov Food Sci Emerg Technol 11(4):742–748.  https://doi.org/10.1016/j.ifset.2010.06.003 CrossRefGoogle Scholar
  24. Fernández EJ, Barrasa JG, Laguna A, Luzuriaga JML, Monge M, Torres C (2008) The preparation of highly active antimicrobial silver nanoparticles byan organometallic approach. Nanotechnology 19:185602–185608.  https://doi.org/10.1021/acs.jpcc.5b11724 CrossRefPubMedGoogle Scholar
  25. Fernández A, Picouet P, Lloret E (2010) Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. Int J Food Microbiol 142(1–2):222–228.  https://doi.org/10.1016/j.ijfoodmicro.2010.07.001 CrossRefPubMedGoogle Scholar
  26. Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22(1):64–75.  https://doi.org/10.1016/j.jfda.2014.01.005 CrossRefPubMedGoogle Scholar
  27. Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15.  https://doi.org/10.1016/j.ijfoodmicro.2006.07.008 CrossRefPubMedGoogle Scholar
  28. Ghorbani HR (2013) Biosynthesis of silver nanoparticles by Escherichia coli. Asian J Chem.  https://doi.org/10.14233/ajchem.2013.12805 CrossRefGoogle Scholar
  29. Gong P, Li H, He X et al (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604–285611.  https://doi.org/10.1088/0957-4484/18/28/285604 CrossRefGoogle Scholar
  30. Ginsburg I (1989) Bacteriolysis is inhibited by hydrogen peroxide and by proteases. Agents Actions 28:238–242CrossRefGoogle Scholar
  31. Gul HT, Saeed S, Khan FZ, Manzoor SA (2014) Potential of nanotechnology in agriculture and crop protection: A. Appl Sci Bus Econ 1(2):23–28Google Scholar
  32. Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects: pros and cons. Environ Health Perspect.  https://doi.org/10.1289/ehp.8871 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hajipour MJ, Fromm KM, Ashkarra AA et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511.  https://doi.org/10.1016/j.tibtech.2012.06.004 CrossRefPubMedGoogle Scholar
  34. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322.  https://doi.org/10.1104/pp.106.077073 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hamdi H, De La Torre-Roche R, Hawthorne J, White JC (2014) Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.). Nanotoxicology 9(2):172–180.  https://doi.org/10.3109/17435390.2014.907456 CrossRefPubMedGoogle Scholar
  36. Harikumar PS, Aravind A (2016) Antibacterial activity of copper nanoparticles and copper nanocomposites against Escherichia Coli bacteria. Int J Sci 5(2):83–90.  https://doi.org/10.18483/ijSci.957 CrossRefGoogle Scholar
  37. Hu K, Lan D, Li X, Zhang S (2008) Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA—Au Bio Bar Codes. Anal Chem 80(23):9124–9130.  https://doi.org/10.1021/ac8017197 CrossRefPubMedGoogle Scholar
  38. Hwang ET, Lee JH, Chae YJ et al (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4(6):746–750.  https://doi.org/10.1002/smll.200700954 CrossRefPubMedGoogle Scholar
  39. Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Notices.  https://doi.org/10.1155/2014/359316 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ishida K, Cipriano TF, Rocha GM et al (2013) Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz, Rio de Janeiro 1–9Google Scholar
  41. Jamshidi A, Jahangiri-Rad M (2014) Synthesis of copper nanoparticles and its antibacterial activity against Escherichia coli. Asian J Biol Sci 7:183–186.  https://doi.org/10.3923/ajbs.2014.183.186 CrossRefGoogle Scholar
  42. Johnson F, Giulivi C (2005) Superoxide dismutases and their impact upon human health. Mol Asp Med 26(4–5):340–352.  https://doi.org/10.1016/j.mam.2005.07.006 CrossRefGoogle Scholar
  43. Joo J, Yim C, Kwon D et al (2012) A facile and sensitive detection of pathogenic bacteria using magnetic nano particles and optical nanocrystal probes. Analyst 137:3609–3612.  https://doi.org/10.1039/C2AN35369E CrossRefPubMedGoogle Scholar
  44. Jung WK, Koo HC, Kim KW et al (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178.  https://doi.org/10.1128/AEM.02001-07 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13):6409–6413.  https://doi.org/10.1021/la800951v CrossRefPubMedGoogle Scholar
  46. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70.  https://doi.org/10.1016/j.cropro.2012.01.007 CrossRefGoogle Scholar
  47. Kim YH, Lee DK, Cha HG et al (2006) Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J Phy ChemB 49:24923–24928.  https://doi.org/10.1021/jp0656779 CrossRefGoogle Scholar
  48. Kim JS, Kuk E, Yu KN et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101CrossRefGoogle Scholar
  49. Kim KJ, Sung WS, Moon SK et al (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484.  https://doi.org/10.1016/j.nano.2006.12.001 CrossRefGoogle Scholar
  50. Kim KJ, Sung WS, Suh BK et al (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242.  https://doi.org/10.1007/s10534-008-9159-2 CrossRefPubMedGoogle Scholar
  51. Lakshminarayanan R, Ye E, Young DJ, Li Z, Loh XJ (2018) Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv Healthc Mater.  https://doi.org/10.1002/adhm.201701400 CrossRefPubMedGoogle Scholar
  52. Lamsal K, Kim SW, Jung JH et al (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39(3):194–199.  https://doi.org/10.5941/MYCO.2011.39.3.194 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals. Nat Rev Microbiol 11(6):71–84.  https://doi.org/10.1038/nrmicro3028 CrossRefGoogle Scholar
  54. Li L, Li B, Cheng D, Mao L (2010) Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe. Food Chem 122(3):895–900.  https://doi.org/10.1016/j.foodchem.2010.03.032 CrossRefGoogle Scholar
  55. Liao JY, Li H (2010) Lateral flow immunodipstick for visual detection of aflatoxin B1 in food using immuno-nanoparticles composed of a silver core and a gold shell. Microchim Acta 171:289.  https://doi.org/10.1007/s00604-010-0431-0 CrossRefGoogle Scholar
  56. Lili H, Yang L, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215.  https://doi.org/10.1016/j.micres.2010.03.003 CrossRefGoogle Scholar
  57. Lok CN, Ho CM, Chen R et al (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924.  https://doi.org/10.1021/pr0504079 CrossRefPubMedGoogle Scholar
  58. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105(38):14265–14270.  https://doi.org/10.1073/pnas.0805135105 CrossRefPubMedGoogle Scholar
  59. Mahdi SS, Vadood R, Nourdahr R (2012) Study on the antimicrobial effect of nanosilver tray packaging of minced beef at refrigerator temperature. Glob Vet 9(3):284–289.  https://doi.org/10.5829/idosi.gv.2012.9.3.1827 CrossRefGoogle Scholar
  60. Mallmann EJJ, Cunha FA, Castro BNMF et al (2015) Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop Sao Paulo 57(2):165–167.  https://doi.org/10.1590/S0036-46652015000200011 CrossRefPubMedPubMedCentralGoogle Scholar
  61. McQuillan J (2010) Bacterial-nanoparticle interactions. Thesis for the degree of Doctor of Philosophy in Biological Sciences. University of ExeterGoogle Scholar
  62. McQuillan JS, Shaw AM (2014) Differential gene regulation in the Ag nanoparticle and Ag+-induced silver stress response in Escherichia coli: a full transcriptomic profile. Nanotoxicology 8(sup1):177–184.  https://doi.org/10.3109/17435390.2013.870243 CrossRefPubMedGoogle Scholar
  63. Mendes JE, Abrunhosa L, Teixeira JA et al (2014) Antifungal activity of silver colloidal nanoparticles against phytopathogenic fungus (Phomopsis sp.) in soybean seeds. Int J Biol Vet Agri Food Eng 8(9):928–933.  https://doi.org/10.5281/zenodo.1095981 CrossRefGoogle Scholar
  64. Metak AM, Ajaal TT (2013) Investigation on polymer based nano-silver as food packaging materials. Int J Biol Food Vet Agric Eng 7:772–777Google Scholar
  65. Mihindukulasuriya SDF, Lim LT (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Technol 40(2):149–167.  https://doi.org/10.1016/j.tifs.2014.09.009 CrossRefGoogle Scholar
  66. Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353.  https://doi.org/10.1088/0957-4484/16/10/059 CrossRefPubMedGoogle Scholar
  67. Mueller CF, Laude K, McNally JS, Harrison DG (2005) Redox mechanisms in blood vessels. Arterioscler Thromb Vasc Biol 25(2):274–278.  https://doi.org/10.1161/01.ATV.0000149143.04821.eb CrossRefPubMedGoogle Scholar
  68. Mukherjee P, Ahmad A, Mandal D et al (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519CrossRefGoogle Scholar
  69. Murphy C, Carroll C, Jordan KN (2006) Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J Appl Microbiol 100:623–632.  https://doi.org/10.1111/j.1365-2672.2006.02903.x CrossRefPubMedGoogle Scholar
  70. Musee N, Thwala M, Nota N (2011) The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J Environ Monit 13(5):1164–1183.  https://doi.org/10.1039/c1em10023h CrossRefPubMedGoogle Scholar
  71. Nagy A, Harrison A, Sabbani S et al (2011) Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomed 6:1833.  https://doi.org/10.2147/IJN.S24019 CrossRefGoogle Scholar
  72. Nair S, Sasidharan A, Rani VVD et al (2009) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 20:S235–S241.  https://doi.org/10.1007/s10856-008-3548-5 CrossRefPubMedGoogle Scholar
  73. Nasrollahi A, Pourshamsian KH, Mansourkiaee P (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dimens 1(3):233–239.  https://doi.org/10.7508/ijnd.2010.03.007 CrossRefGoogle Scholar
  74. Navarro E, Baun A, Behra R et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386.  https://doi.org/10.1007/s10646-008-0214-0 CrossRefPubMedGoogle Scholar
  75. Navya PN, Daima HK (2016) Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg 3:1.  https://doi.org/10.1186/s40580-016-0064-z CrossRefPubMedPubMedCentralGoogle Scholar
  76. Noh HJ, Kim HS, Cho S, Park Y (2013) Melamine nanosensing with chondroitin sulfate-reduced gold nanoparticles. J Nanosci Nanotechnol 12(13):8229–8238CrossRefGoogle Scholar
  77. Noorbakhsh F, Rezaie S, Shahverdi AR (2011) Antifungal effects of silver nanoparticle alone and with combination of antifungal drug on dermatophyte pathogen Trichophyton rubrum. International conference on bioscience, biochemistry and bioinformatics, vol 5. IACSIT Press, Singapore, pp 364–367Google Scholar
  78. Ocsoy I, Paret ML, Ocsoy MA et al (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980.  https://doi.org/10.1021/nn4034794 CrossRefPubMedGoogle Scholar
  79. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720.  https://doi.org/10.1128/AEM.02218-06 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Panácek A, Kolár M, Vecerová R et al (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340.  https://doi.org/10.1016/j.biomaterials.2009.07.065 CrossRefPubMedGoogle Scholar
  81. Pantopoulos K, Schipper HM (2012) Principles of free radical biomedicine. Nova Science Publications, HauppaugeGoogle Scholar
  82. Park SS, Worobo RW, Durst RA (2001) Escherichia coli O157: H7 as an emerging foodborne pathogen: a literature review. Crit Rev Biotechnol 21:27–48.  https://doi.org/10.1080/10408699991279259 CrossRefPubMedGoogle Scholar
  83. Park J, Kim JY, Kim J et al (2009) Silver-ion mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032.  https://doi.org/10.1016/j.watres.2008.12.002 CrossRefPubMedGoogle Scholar
  84. Patel N, Desa P, Pael N, Jha A, Gautam HK (2014) Agronatechlogy for plant fungal disease management: a review. Int J Cur Micobl Appl Sci 3(10):71–84 (ISSN: 2319–7706)Google Scholar
  85. Paula MMDS, Franco CV, Baldin MC et al (2009) Synthesis, characterization and antibacterial activity studies of poly-{styrene-acrylic acid} with silver nanoparticles. Mater Sci Eng C 29(2):647–650.  https://doi.org/10.1016/j.msec.2008.11.017 CrossRefGoogle Scholar
  86. Pelletier DA, Suresh AK, Holton GA et al (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76(24):7981–7989.  https://doi.org/10.1128/AEM.00650-10 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163.  https://doi.org/10.1128/CMR.00029-06 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Pimbley DW, Patel PD (1998) A review of analytical methods for the detection of bacterialtoxins. J Appl Microbiol 84:98S–109S.  https://doi.org/10.1046/j.1365-2672.1998.0840s198S.x CrossRefGoogle Scholar
  89. Poonlapdecha W, Seetang-Nun Y, Wonglumsom W et al (2018) Antibody-conjugated ferromagnetic nanoparticles with lateral flow test strip assay for rapid detection of Campylobacter jejuni in poultry samples. Int J Food Microbiol 286:6–14.  https://doi.org/10.1016/j.ijfoodmicro.2018.07.009 CrossRefPubMedGoogle Scholar
  90. Pradhan N, Singh S, Ojha N, Shrivastava A et al (2015) Facets of nanotechnology as seen in food processing, packaging, and preservation industry. Biomed Res Int.  https://doi.org/10.1155/2015/365672 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Prasad VK, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):706–713.  https://doi.org/10.5897/AJBX2013.13554 CrossRefGoogle Scholar
  92. Priyanka B, Patil RK, Dwarakanath S (2016) A review on detection methods used for foodborne pathogens. Indian J Med Res 144(3):327.  https://doi.org/10.4103/0971-5916.198677 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Prucek R, Tucek J, Kilianová M et al (2011) The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32:4704–4713.  https://doi.org/10.1016/j.biomaterials.2011.03.039 CrossRefPubMedGoogle Scholar
  94. Radzig MA, Nadtochenko VA, Koksharova VA et al (2013) Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B Biointerfaces 102:300–306.  https://doi.org/10.1016/j.colsurfb.2012.07.039 CrossRefPubMedGoogle Scholar
  95. Rai M, Ingle A (2012a) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293.  https://doi.org/10.1007/s00253-012-3969-4 CrossRefPubMedGoogle Scholar
  96. Rai M, Ingle A (2012b) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293.  https://doi.org/10.1007/s00253-012-3969-4 CrossRefPubMedGoogle Scholar
  97. Rajeshkumar S, Bharath LV (2017) Mechanism of plant-mediated synthesis of silver nanoparticles–a review on biomolecules involved, characterisation and antibacterial activity. Chem-Biol Interact 273:219–227.  https://doi.org/10.1016/j.cbi.2017.06.019 CrossRefPubMedGoogle Scholar
  98. Rispail N, De Matteis L, Santos R et al (2014) Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: internalization and toxicity profile. ACS Appl Mater Interfaces 6(12):9100–9110.  https://doi.org/10.1021/am501029g CrossRefPubMedGoogle Scholar
  99. Sastry M, Ahmad A, Khan MI et al (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170Google Scholar
  100. Sekhon BS (2010) Food nanotechnology—an overview. Nanotechnol Sci Appl 4(3):1–15Google Scholar
  101. Shankar SS, Rai A, Ahmad A et al (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502.  https://doi.org/10.1016/j.jcis.2004.03.003 CrossRefPubMedGoogle Scholar
  102. Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789.  https://doi.org/10.1146/annurev.micro.50.1.753 CrossRefPubMedGoogle Scholar
  103. Silver S, Phung le T, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634.  https://doi.org/10.1007/s10295-006-0139-7 CrossRefPubMedGoogle Scholar
  104. Singh S, Tripathi DK, Dubey NK, Chauhan DK (2016) Effects of nano-materials on seed germination and seedling growth: striking the slight balance between the concepts and controversies. Mater Focus 5(3):195–201.  https://doi.org/10.1166/mat.2016.1329 CrossRefGoogle Scholar
  105. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on Escherichia coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182.  https://doi.org/10.1016/j.jcis.2004.02.012 CrossRefPubMedGoogle Scholar
  106. Stoimenov P, Klinger R, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686.  https://doi.org/10.1021/la0202374 CrossRefGoogle Scholar
  107. Sung YJ, Suk HJ, Sung HY, Li T et al (2013) Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk. Biosens Bioelectron 43:432–439.  https://doi.org/10.1016/j.bios.2012.12.052 CrossRefPubMedGoogle Scholar
  108. Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5(2):463–474.  https://doi.org/10.1039/C2NR32447D CrossRefPubMedGoogle Scholar
  109. Toker RD, Kayaman-Apohan N, Kahraman MV (2013) UV-curable nano-silver containing polyurethane based organic–inorganic hybrid coatings. Prog Org Coat 76(9):1243–1250.  https://doi.org/10.1016/j.porgcoat.2013.03.023 CrossRefGoogle Scholar
  110. Touyz RM (2005) Molecular and cellular mechanisms in vascular injury in hypertension: role of angiotensin II–editorial review. Curr Opin Nephrol Hypertens 14(2):125–131CrossRefGoogle Scholar
  111. Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198.  https://doi.org/10.1016/j.plaphy.2015.07.026 CrossRefPubMedGoogle Scholar
  112. Tripathi DK, Tripathi A, Gaur S et al (2017a) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:7.  https://doi.org/10.3389/fmicb.2017.00007 CrossRefGoogle Scholar
  113. Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017b) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81.  https://doi.org/10.1016/j.plaphy.2016.06.026 CrossRefPubMedGoogle Scholar
  114. Valipoor Motlagh N, Hamed Mosavian MT, Mortazavi SA (2013) Effect of polyethylene packaging modified with silver particles on the microbial, sensory and appearance of dried barberry. Packag Technol Sci 26(1):39–49.  https://doi.org/10.1002/pts.1966 CrossRefGoogle Scholar
  115. Valko M, Rhodes C, Moncol J, Izakovic MM, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40.  https://doi.org/10.1016/j.cbi.2005.12.009 CrossRefGoogle Scholar
  116. Van Aken B (2015) Gene expression changes in plants and microorganisms exposed to nanomaterials. Curr Opin Biotechnol 33:206–219.  https://doi.org/10.1016/j.copbio.2015.03.005 CrossRefPubMedGoogle Scholar
  117. Vecitis CD, Zodrow KR, Kang S, Elimelech M (2010) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4(9):5471–5479.  https://doi.org/10.1021/nn101558x CrossRefPubMedGoogle Scholar
  118. Vishwakarma K, Shweta, Upadhyay N, Singh J, Liu S, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2017) Differential Phytotoxic Impact of Plant Mediated Silver Nanoparticles (AgNPs) and Silver Nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1501.  https://doi.org/10.3389/fpls.2017.01501 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Viswanathan S, Wu LC, Huang MR, Ho JA (2006) Electrochemical immunosensor for cholera toxin using liposomes and poly (3,4-ethylenedioxythiophene)-coated carbon nanotubes. Anal Chem 78:1115–1121.  https://doi.org/10.1021/ac051435d CrossRefPubMedGoogle Scholar
  120. Woo KS, Kim KS, Lamsal K et al (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp.. J Microbiol Biotechnol 19:760–764.  https://doi.org/10.4014/jmb.0812.649 CrossRefGoogle Scholar
  121. Wu S, Duan N, Zhu C et al (2011) Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels. Biosens Bioelectron 30(1):35–42.  https://doi.org/10.1016/j.bios.2011.08.023 CrossRefPubMedGoogle Scholar
  122. Wu H, Yin JJ, Wamer WG, Zeng M, Lo YM (2014) Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J Food Drug Anal 22(1):86–94.  https://doi.org/10.1016/j.jfda.2014.01.007 CrossRefPubMedGoogle Scholar
  123. Wu S, Duan N, Gu H, Hao L et al (2016) A review of the methods for detection of Staphylococcus aureus enterotoxins. Toxins 8(7):176.  https://doi.org/10.3390/toxins8070176 CrossRefPubMedCentralGoogle Scholar
  124. Xu H et al(2012). Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. Biometals 25:45–53.  https://doi.org/10.1007/s10534-011-9482-x CrossRefPubMedGoogle Scholar
  125. Yang Y, Mathieu JM, Chattopadhyay S et al (2012) Defense mechanisms of Pseudomonas aeruginosa PAO1 against quantum dots and their released heavy metals. ACS Nano 6(7):6091–6098.  https://doi.org/10.1021/nn3011619 CrossRefPubMedGoogle Scholar
  126. Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575.  https://doi.org/10.1016/j.scitotenv.2006.11.007 CrossRefPubMedGoogle Scholar
  127. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanoparticle Rev 9(3):479–489.  https://doi.org/10.1007/s11051-006-9150-1 CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Jaspreet Singh
    • 1
  • Kanchan Vishwakarma
    • 1
  • Naleeni Ramawat
    • 2
  • Padmaja Rai
    • 1
  • Vivek Kumar Singh
    • 3
  • Rohit Kumar Mishra
    • 4
  • Vivek Kumar
    • 5
  • Durgesh Kumar Tripathi
    • 2
    Email author
  • Shivesh Sharma
    • 1
    Email author
  1. 1.Department of BiotechnologyMotilal Nehru National Institute of Technology AllahabadPrayagrajIndia
  2. 2.Amity Institute of Organic AgricultureAmity University Uttar PradeshNoidaIndia
  3. 3.Department of PhysicsShri Mata Vaishno Devi UniversityKatraIndia
  4. 4.Department of MicrobiologySwami Vivekanand UniversitySagarIndia
  5. 5.Himalayan Institute of BiosciencesSwami Rama Himalayan UniversityDehradunIndia

Personalised recommendations