Advertisement

3 Biotech

, 9:44 | Cite as

Insights into multifaceted activities of CysK for therapeutic interventions

  • Pallavi Joshi
  • Abhinal Gupta
  • Vibha GuptaEmail author
Review Article
  • 24 Downloads

Abstract

CysK (O-acetylserine sulfhydrylase) is a pyridoxal-5′ phosphate-dependent enzyme which catalyzes the second step of the de novo cysteine biosynthesis pathway by converting O-acetyl serine (OAS) into l-cysteine in the presence of sulfide. The first step of the cysteine biosynthesis involves formation of OAS from serine and acetyl CoA by CysE (serine acetyltransferase). Apart from role of CysK in cysteine biosynthesis, recent studies have revealed various additional roles of this enzyme in bacterial physiology. Other than the suggested regulatory role in cysteine production, other activities of CysK include involvement of CysK-in contact-dependent toxin activation in Gram-negative pathogens, as a transcriptional regulator of CymR by stabilizing the CymR-DNA interactions, in biofilm formation by providing cysteine and via another mechanism not yet understood, in ofloxacin and tellurite resistance as well as in cysteine desulfurization. Some of these activities involve binding of CysK to another cellular partner, where the complex is regulated by the availability of OAS and/or sulfide (H2S). The aim of this study is to present an overview of current knowledge of multiple functions performed by CysK and identifying structural features involved in alternate functions. Due to possible role in disease, promoting or inhibiting a “moonlighting” function of CysK could be a target for developing novel therapeutic interventions.

Keywords

CysK Cysteine biosynthesis pathway Cysteine synthase complex Multifaceted roles Contact-dependent growth inhibition Ofloxacin resistance Tellurite resistance CymR regulation Biofilm formation Cysteine desulfurization CysK inhibitors Moonlighting functions 

Notes

Acknowledgements

Authors are grateful to Indian Council for Medical Research (ICMR), Government of India, for the research grant (BIC/12(16)/2012). We sincerely thank Department of Biotechnology, Jaypee Institute of Information Technology for providing an opportunity to present this work at International Conference on Advances in Biosciences and Biotechnology—2018.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Akerley BJ, Rubin EJ, Novick VL, Amaya K, Judson N, Mekalanos JJ (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci USA 99:966–971PubMedGoogle Scholar
  2. Amori L, Katkevica S, Bruno A, Campanini B, Felici P, Mozzarelli A, Costantino G (2012) Design and synthesis of trans-2-substituted-cyclopropane-1-carboxylic acids as the first non-natural small molecule inhibitors of O-acetylserine sulfhydrylase. Med Chem Commun 3:1111–1116Google Scholar
  3. Annunziato G, Pieroni M, Benoni R, Campanini B, Pertinhez TA, Pecchini C, Bruno A, Magalhães J, Bettati S, Franko N, Mozzarelli A, Costantino G (2016) Cyclopropane-1,2-dicarboxylic acids as new tools for the biophysical investigation of O-acetylserine sulfhydrylases by fluorimetric methods and saturation transfer difference (STD) NMR. J Enzyme Inhib Med Chem 31:78–87PubMedGoogle Scholar
  4. Aoki SK, Poole SJ, Hayes CS, Low DA (2011) Toxin on a stick: modular CDI toxin delivery systems play roles in bacterial competition. Virulence 2:356–359PubMedPubMedCentralGoogle Scholar
  5. Awano N, Wada M, Mori H, Nakamori S, Takagi H (2005) Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl Environ Microbiol 71:4149–4152PubMedPubMedCentralGoogle Scholar
  6. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006–2008PubMedPubMedCentralGoogle Scholar
  7. Baugh L et al (2015) Increasing the structure coverage of tuberculosis drug targets. Tuberculosis (Edinb) 95:142–148Google Scholar
  8. Benoni R, Pertinhez TA, Spyrakis F, Davalli S, Pellegrino S, Peredi G, Pezzotti A, Bettati S, Campanini B, Mozzarelli A (2016) Structural Insights into the Interaction of O-acetylserine sulfhydrylase with competitive, peptidic inhibitors by saturation transfer difference-NMR. FEBS Lett 590:943–953PubMedGoogle Scholar
  9. Benoni R, Beck CM, Garza-Sanchez F, Bettati S, Mozzarelli A, Hayes CS, Campanini B (2017) Activation of an anti-bacterial toxin by the biosynthetic enzyme CysK: mechanism of binding, interaction specificity and competition with cysteine synthase. Nature 7:146–157Google Scholar
  10. Bogicevic B, Berthoud H, Portmann R, Meile L, Irmler S (2012) CysK from Lactobacillus casei encodes a protein with O-acetylserine sulfhydrylase and cysteine desulfurization activity. Appl Microbiol Biotechnol 94:1209–1220PubMedGoogle Scholar
  11. Bonner ER, Cahoon RE, Knapke SM, Jez JM (2005) Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana. J Biol Chem 280(46):38803–38813PubMedGoogle Scholar
  12. Bruno A, Amori L, Constantino G (2013) Computational insights into the mechanism of inhibition of OASS-A by a small molecule inhibitor. Mol Inform 32:447–457PubMedGoogle Scholar
  13. Burkhard P, Jagannatha Rao GS, Hohenester E, Schnackerz KD, Cook PF, Jansonius JN (1998) Three- dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. J Mol Biol 283:121–133PubMedGoogle Scholar
  14. Burkhard P, Tai CH, Ristroph CM, Cook PF, Jansonius JN (1999) Ligand binding induce a large conformational change in O-acetylserine sulfhydrylase from Salmonella typhimurium. J Mol Biol 291:941–953PubMedGoogle Scholar
  15. Burkhard P, Tai CH, Jansonius JN, Cook PF (2000) Identification of an allosteric anion-binding site on O-acetylserine sulfhydrylase: structure of the enzyme with chloride bound. J Mol Biol 303:279–286PubMedGoogle Scholar
  16. Campanini B, Pieroni M, Raboni S, Bettati S, Benoni R, Pecchini C, Costantino G, Mozzarelli A (2015a) Inhibitors of the sulfur assimilation pathway in bacterial pathogens as enhancers of antibiotic therapy. Curr Med Chem 22:187–213PubMedGoogle Scholar
  17. Campanini B, Benoni R, Bettati S, Beck CM, Hayes CS, Mozzarelli A (2015b) Moonlighting O-acetylserine sulfhydrylase: new functions for an old protein. Biochim Biophys Acta 1854:1184–1193PubMedPubMedCentralGoogle Scholar
  18. Chandey M, Multani AS (2012) Comparative study of efficacy and safety of azithromycin and ofloxacin in uncomplicated typhoid fever: a randomised, open labelled study. J Clin Diagn Res 6:1736–1739PubMedPubMedCentralGoogle Scholar
  19. Chaudhuri RR, Allen AG, Owen PJ, Shalom G, Stone K, Harrison M, Burgis TA, Lockyer M, Garcia-Lara J, Foster SJ, Pleasance SJ, Peters SE, Maskell DJ, Charles IG (2009) Comprehensive identification of essential Staphylococcus aureus genes using transposon-mediated differential hybridisation (TMDH). BMC Genom 10:291Google Scholar
  20. Chinthalapudi K, Kumar M, Kumar S, Jain S, Alam N, Gourinath S (2008) Crystal structure of native O-acetylserine sulfhydrylase from Entamoeba histolytica and its complex with cysteine: structural evidence for cysteine binding and lack of interactions with serine acetyl transferase. Proteins 72:1222–1232PubMedGoogle Scholar
  21. Chiong M, González E, Barra R, Vásquez C (1988) Purification and biochemical characterization of tellurite-reducing activitiesfromThermustherrmophilusHB8. J Bacteriol 170:3269–3273PubMedPubMedCentralGoogle Scholar
  22. Cook PF, Wedding RT (1978) Cysteine synthetase from Salmonella typhimurium LT-2. Aggregation, kinetic behavior, and effect of modifiers. J Biol Chem 253:7874–7879PubMedGoogle Scholar
  23. Crump JA, Kretsinger K, Gay K, Hoekstra RM, Vugia DJ, Hurd S, Segler SD, Megginson M, Luedeman LJ, Shiferaw B, Hanna SS, Joyce KW, Mintz ED, Angulo FJ (2008) Clinical response and outcome of infection with Salmonella enterica serotype Typhi with decreased susceptibility to fluoroquinolones: a United States foodnet multicenter retrospective cohort study. Antimicrob Agents Chemother 52:1278–1284PubMedPubMedCentralGoogle Scholar
  24. Devi S, Abdul Rehman SA, Tarique KF, Gourinath S (2017) Structural characterization and functional analysis of cystathionine β-synthase: an enzyme involved in the reverse transsulfuration pathway of Bacillus anthracis. FEBS J 284:3862–3880PubMedGoogle Scholar
  25. Dharavath S, Raj I, Gourinath S (2017) Structure-based mutational studies of O-acetylserine sulfhydrylase reveal the reason for the loss of cysteine synthase complex formation in Brucella abortus. Biochem J 474:1221–1239PubMedGoogle Scholar
  26. Diner EJ, Beck CM, Webb JS, Low DA, Hayes CS (2012) Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI). Genes Dev 26:515–525PubMedPubMedCentralGoogle Scholar
  27. Droux M, Ruffet ML, Douce R, Job D (1998) Interactions between Serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants—structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255:235–245PubMedGoogle Scholar
  28. Dwivedi CM, Ragin RC, Uren JR (1982) Cloning, purification, and characterization of beta-cystathionase from Escherichia coli. Biochem 21:3064–3069Google Scholar
  29. Feldman-Salit A, Wirtz M, Lenherr ED, Throm C, Hothorn M, Scheffzek K, Hell R, Wade RC (2012) Allosterically gated enzyme dynamics in the cysteine synthase complex regulate cysteine biosynthesis in arabidopsis thaliana. Structure 20(2):292–302PubMedGoogle Scholar
  30. Francois JA, Kumaran S, Jez JM (2006) Structural basis for interaction of O-acetylserine sulfhydrylase and serine acetyltransferase in the arabidopsis cysteine synthase complex. Plant Cell 18(12):3647–3655PubMedPubMedCentralGoogle Scholar
  31. Franko N, Grammatoglou K, Campanini B, Costantino G, Jirgensons A, Mozzarelli A (2018) Inhibition of O-acetylserine sulfhydrylase by fluoroalanine derivatives. J Enzyme Inhib Med Chem 33:1343–1351PubMedPubMedCentralGoogle Scholar
  32. Frávega J, Álvarez R, Dìaz F, Inostroza O, Tejìas C, Rodas PI, Paredes-Sabja D, Fuentes JA, Calderòn IL, Gil F (2016) Salmonella Typhimurium exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant moleculeH2S in a CysK-dependent manner. J Antimicrob Chemother 71:3409–3415PubMedGoogle Scholar
  33. Fu KP, Hilliard J, Isaacson D et al (1990) In-vivo evaluation of ofloxacin in Salmonella typhimurium infection in mice. J Antimicrob Chemother 25:263–268PubMedGoogle Scholar
  34. Gallagher DT, Gilliland GL, Xiao G, Zondlo J, Fisher KE, Chinchilla D, Eisenstein E (1998) Structure and control of pyridoxal phosphate dependent allosteric threonine deaminase. Structure (Lond) 6:465–475Google Scholar
  35. Garberg P, Engman L, Tolmachev V, Lundqvist H, Gerdes R, Cotgreave I (1999) Binding of tellurium to hepatocellular selenoproteins during incubation with inorganic tellurite: consequences for the activity of selenium-dependent glutathione peroxidase. Int J Biochem Cell Biol 31:291–301PubMedGoogle Scholar
  36. Gerdes SY, Scholle MD, Campbell JW, Balázsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D’Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabási AL, Oltvai ZN, Osterman AL (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185:5673–5684PubMedPubMedCentralGoogle Scholar
  37. Grishin NV, Phillips MA, Goldsmith EJ (1995) Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Protein Sci 6:465–475Google Scholar
  38. Guédon E, Martin-Verstraete I (2006) Cysteine Metabolism and Its Regulation in Bacteria. Amino Acid Biosynth Pathw Regulat Metab Eng 5:195–218Google Scholar
  39. Heine A et al (2004) Crystal Structure of O-Acetylserine sulfhydrylase (TM0665) from Thermotoga maritima at 1.8 Å Resolution. Proteins 56:387–391PubMedGoogle Scholar
  40. Huang B, Vetting MW, Roderick SL (2005) The active site of O-acetylserine sulfhydrylase is the anchor point for bienzyme complex formation with serine acetyltransferase. J Bacteriol 187:3201–3205PubMedPubMedCentralGoogle Scholar
  41. Hulanicka MD, Hallquist SG, Kredich NM, Mojica-A T (1979) Regulation of O-acetylserine sulfhydrylase B by l-cysteine in Salmonella typhimurium. J Bacteriol 140:141–146PubMedPubMedCentralGoogle Scholar
  42. Hullo MF, Auger S, Soutourina O, Barzu O, Yvon M, Danchin A, Martin-Verstraete I (2007) Conversion of methionine to cysteine in Bacillus subtilis and its regulation. J Bacteriol 189:187–197PubMedGoogle Scholar
  43. Jean kumar VU, Poyraz O, Saxena S, Schnell R, Yogeeswari P, Schneider G, Sriram D (2013) Discovery of novel inhibitors targeting the Mycobacterium tuberculosis O-acetylserine sulfhydrylase (CysK1) using virtual high-throughput screening. Bioorg Med Chem Lett 23:1182–1186PubMedGoogle Scholar
  44. Johnson PM, Beck CM, Morse RP, Garza-Sanchez F, Low DA, Hayes CS, Goulding CW (2016) Unraveling essential role of CysK in CDI toxin activation. Proc Natl Acad Sci USA 113:9792–9797PubMedGoogle Scholar
  45. Joshi S, Amarnath SK (2007) Fluoroquinolone resistance in Salmonella typhi and S. paratyphi A in Bangalore, India. Trans R Soc Trop Med Hyg 101:308–310PubMedGoogle Scholar
  46. Kant V, Vijayakumar S, Sahoo GC, Chaudhery SS, Das P (2018) In-silico screening and validation of high-affinity tetra-peptide inhibitor of Leishmania donovani O-acetyl serine sulfhydrylase (OASS). J Biomol Struct Dyn 36:1–15Google Scholar
  47. Kaundal S, Uttam M, Thakur KG (2016) Dual Role of a biosynthetic enzyme, CysK, in contact dependent growth inhibition in bacteria. Plos One 10:1–18Google Scholar
  48. Kaushik A, Ekka MK, Kumaran S (2017) Two distinct assembly states of cysteine regulatory complex of salmonella typhimurium are regulated by enzyme-substrate cognate pairs. Biochem 56:1–43Google Scholar
  49. Kobayashi K et al (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100:4678–4683PubMedGoogle Scholar
  50. Kredich NM (1992) The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli. Mol Microbiol 6:2747–2753PubMedGoogle Scholar
  51. Kredich NM, Tomkins GM (1966) The enzymic synthesis of l-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem 241:4955–4965PubMedGoogle Scholar
  52. Kredich NM, Becker MA, Tomkins GM (1969) Purification and characterization of cysteine synthetase, a bifunctional protein complex, from Salmonella typhimurium. J Biol Chem 244:2428–2439PubMedGoogle Scholar
  53. Kumar S, Raj I, Nagpal I, Subbarao N, Gourinath S (2011) Structural and biochemical studies of serine acetyltransferase reveal why the parasite Entamoeba histolytica cannot form a cysteine synthase complex. J Biol Chem 286:12533–12541PubMedPubMedCentralGoogle Scholar
  54. Lu M, Xu BY, Zhou K, Cheng W, Jiang YL, Chen Y, Zhou CZ (2014) Structural and biochemical Analysis of Microcystis aeruginosa O-acetylserine sulfhydrylases reveal a negative feedback regulation of cysteine biosynthesis. Biochim Biophys Acta 1844:308–315PubMedGoogle Scholar
  55. Magalhães J, Franko N, Annunziato G, Welch M, Dolan SK, Bruno A, Mozzarelli A, Armao S, Jirgensons A, Pieroni M, Costantino G, Campanini B (2018) Discovery of novel fragments inhibiting O-acetylserine sulphhydrylase by combining scaffold hopping and ligand-based drug design. J Enzyme Inhib Med Chem 33:1444–1452PubMedPubMedCentralGoogle Scholar
  56. Matoba Y, Yoshida T, Izuhara-Kihara H, Noda M, Sugiyama M (2017) Crystallographic and mutational analyses of cystathionine b-synthase in the H2S synthetic gene cluster in Lactobacillus plantarum. Protein Sci 26:763–783PubMedPubMedCentralGoogle Scholar
  57. Mazumder M, Gourinath S (2016) Structure-based design of inhibitors of the crucial cysteine biosynthetic pathway enzyme O-acetyl serine sulfhydrylase. Curr Top Med Chem 16:948–959PubMedGoogle Scholar
  58. Mino K, Ishikawa K (2003) Characterization of a novel thermostable O-acetylserine sulfhydrylase from Aeropyrum pernix K1. J Bacteriol 185:2277–2284PubMedPubMedCentralGoogle Scholar
  59. Mino K, Hiraoka K, Imamura K, Sakiyama T, Eisaki N, Matsuyama A, Nakanishi K (2000a) Characteristics of serine acetyltransferase from Escherichia coli deleting different lengths of amino acid residues from the C-terminus. Biosci Biotechnol Biochem 64:1874–1880PubMedGoogle Scholar
  60. Mino K, Yamanoue T, Sakiyama T, Eisaki N, Matsuyama A, Nakanishin K (2000b) Effects of bienzyme complex formation of cysteine synthetase from Escherichia coli on some properties and kinetics. J Stage 64:1628–1640Google Scholar
  61. Mori M, Jeelani G, Masuda Y, Sakai K, Tsukui K, Waluyo D, Tarwadi WY, Nonaka K, Matsumoto A, Ōmura S, Nozaki T, Shiomi K (2015) Identification of natural inhibitors of Entamoeba histolytica cysteine synthase from microbial secondary metabolites. Front Microbiol 6:962PubMedPubMedCentralGoogle Scholar
  62. Mori M, Tsuge S, Fukasawa W, Jeelani G, Nakada-Tsukui K, Nonaka K, Matsumoto A, Ōmura S, Nozaki T, Shiomi K (2018) Discovery of antiamebic compounds that inhibit cysteine synthase from the enteric parasitic protist Entamoeba histolytica by screening of microbial secondary metabolites. Front Cell Infect Microbiol 8:409PubMedPubMedCentralGoogle Scholar
  63. Moscoso H, Saavedra C, Loyola C, Pichuantes S, Vásquez C (1998) Biochemical characterization of tellurite reducing activities from Bacillus stearothermophilus V. Res Microbiol 49:389–397Google Scholar
  64. Murillo LA, Newport G, Lan CY, Habelitz S, Dungan J, Agabian NM (2005) Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot Cell 4:1562–1573PubMedPubMedCentralGoogle Scholar
  65. Nagpal I, Raj I, Subbarao N, Gourinath S (2012) Virtual screening, identification and in vitro testing of novel inhibitors of O-Acetyl-l-Serine sulfhydrylase of Entamoeba histolytica. PLoS One 7:e30305PubMedPubMedCentralGoogle Scholar
  66. Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ (2000) Establishment of an animal-bacterium association: recruiting symbiotic vibrios from the environment. Proc Natl Acad Sci USA 97:10231–10235PubMedGoogle Scholar
  67. Pieroni M, Annunziato G, Beato C, Wouters R, Benoni R, Campanini B, Pertinhez TA, Bettati S, Mozzarelli A, Costantino G (2016) Rational design, synthesis, and preliminary structure-activity relationships of α–substituted-2-phenylcyclopropane carboxylic acids as inhibitors of Salmonella typhimurium O–acetylserine sulfhydrylase. J Med Chem 59:2567–2578PubMedGoogle Scholar
  68. Poyraz O, Jeankumar VU, Saxena S, Schnell R, Haraldsson M, Yogeeswari P, Sriram D, Schneider G (2013) Structure-guided design of novel thiazolidine inhibitors of O-acetylserine sulfhydrylase from Mycobacterium tuberculosis. J Med Chem 56:6457–6466PubMedGoogle Scholar
  69. Raj I, Kumar S, Gourinath S (2012) The narrow active-site cleft of O-acetylserine Sulfhydrylase from Leishmania donovani allows complex formation with serine acetyltransferases with a range of C-termini sequences. Acta Crystallogr 68:909–919Google Scholar
  70. Raj I, Mazumder M, Gourinath S (2013) Molecular basis of ligand recognition by OASS from E. histolytica: insights from structural and molecular dynamics simulation studies. Biochim Biophys Acta 1830:4573–4583PubMedGoogle Scholar
  71. Ramìrez A, Castañeda M, Xiqui ML, Sosa A, Baca BE (2006) Identification, cloning and characterization of cysK, the gene encoding O-acetylserine (thiol)-lyase from Azospirillum brasilense, which is involved in tellurite resistance. FEMS Microbiol Lett 261:272–279PubMedGoogle Scholar
  72. Rengarajan J, Bloom BR, Rubin EJ (2005) Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci USA 102:8327–8332PubMedGoogle Scholar
  73. Salsi E, Bayden AS, Spyrakis F, Amadasi A, Campanini B, Bettati S, Dodatko T, Cozzini P, Kellogg GE, Cook PF, Roderick SL, Mozzarelli A (2010) Design of O-acetylserine sulfhydrylase by mimicking nature. J Med Chem 53:345–356PubMedPubMedCentralGoogle Scholar
  74. Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100:12989–12994PubMedGoogle Scholar
  75. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84PubMedGoogle Scholar
  76. Schneider G, Käck H, Lindqvist Y (2000) The manifold of vitamin B6 dependent enzymes. Structure 8:R1–R6PubMedGoogle Scholar
  77. Schnell R, Oehlmann W, Singh M, Schneider G (2007) Structural insights into catalysis and inhibition of O-acetylserine sulfhydrylase from Mycobacterium tuberculosis. J Biol Chem 282:23473–23481PubMedGoogle Scholar
  78. Schnell R, Sriram D, Schneider G (2015) Pyridoxal-dependent mycobacterium cysteine synthases: structure, mechanism and potential as a drug targets. Biochim Biophys Acta 1854:1175–1183PubMedGoogle Scholar
  79. Seiflein TA, Lawrence JG (2001) Methionine-to-cysteine recycling in Klebsiella aerogenes. J Bacteriol 183:336–346PubMedPubMedCentralGoogle Scholar
  80. Sekowska A, Danchin A (1999) Identification of yrrU as the methylthioadenosine nucleosidase gene in Bacillus subtilis. DNA Res 6:255–264PubMedGoogle Scholar
  81. Shatalin K, Shatalina E, Mironov A, Nudler E (2011) H2S: a universal defense against antibiotics in bacteria. Science 18:986–990Google Scholar
  82. Singh P, Brooks IIJF, Ray VA, Mandel MJ, Visick KL (2015) CysK plays a role in biofilm formation and colonization by Vibrio fischeri. Appl Environ Microbiol 81:5223–5234PubMedPubMedCentralGoogle Scholar
  83. Singh AK, Ekka MK, Kaushik A, Pandya V, Singh RP, Banerjee S, Mittal M, Singh V, Kumaran S (2017) Substrate-induced facilitated dissociation of the competitive inhibitor from the active site of O-acetyl serine sulfhydrylase reveals a competitive-allostery mechanism. Biochemistry 56:5011–5025PubMedGoogle Scholar
  84. Spyrakis F, Singh R, Cozzini P, Campanini B, Salsi E, Felici P, Raboni S, Benedetti P, Cruciani G, Kellogg GE, Cook PF, Mozzarelli A (2013) Isozyme specific ligands for O-acetylserine sulfhydrylase, a novel antibiotic target. Plos One 8:1–13Google Scholar
  85. Steiner EM, Böth D et al (2014) CysK2 from mycobacterium tuberculosis is an ophospho-l-serine-dependent S-sulfocysteine synthase. J bacteriol 196:3410–3420PubMedPubMedCentralGoogle Scholar
  86. Suzuki H, Hashimoto W, Kumagai H (1993) Escherichia coli K-12 can utilize an exogenous gamma-glutamyl peptide as an amino acid source, for which gammaglutamyltranspeptidase is essential. J Bacteriol 175:6038–6040PubMedPubMedCentralGoogle Scholar
  87. Suzuki H, Kamatani S, Kim ES, Kumagai H (2001) Aminopeptidases A, B, and N and dipeptidase D are the four cysteinylglycinases of Escherichia coli K-12. J Bacteriol 183:1489–1490PubMedPubMedCentralGoogle Scholar
  88. Tanous C, Soutourina O, Raynal B, Francoise M, Mervelet P, Gilles AM, Noirot P, Danchin A, England P, Verstraete IM (2008) The CymR regulator in complex with the enzyme CysK controls cysteine metabolism in Bacillus subtilis. J Biol Chem 283:35551–35562PubMedGoogle Scholar
  89. Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532PubMedPubMedCentralGoogle Scholar
  90. Turnbull AL, Surette MG (2008) l-Cysteine is required for induced antibiotic resistance in actively swarming Salmonella enterica serovar Typhimurium. Microbiology 154:3410–3419PubMedGoogle Scholar
  91. Turnbull AL, Surette MG (2010) Cysteine biosynthesis, oxidative stress and antibiotic resistance in Salmonella typhimurium. Res Microbiol 161:643–650PubMedGoogle Scholar
  92. Vásquez CC, Saavedra CP, Loyola CA, Araya MA, Pichuantes S (2001) The product of the cysK Gene of Bacillus stearothermophilus V mediates potassium tellurite resistance in Escherichia coli. Curr Microbiol 43:418–423PubMedGoogle Scholar
  93. Verma D, Gupta S, Kaur KJ, Gupta V (2018) Is perturbation in the quaternary structure of bacterial CysE, another regulatory mechanism for cysteine synthesis? Int J Biol Macromol 111:1010–1018PubMedGoogle Scholar
  94. Vermeij P, Kertesz MA (1999) Pathways of assimilative sulfur metabolism in Pseudomonas putida. J Bacteriol 181:5833–5837PubMedPubMedCentralGoogle Scholar
  95. Wheeler PR, Coldham NG, Keating L, Gordon SV, Wooff EE, Parish T, Hewinson RG (2005) Functional demonstration of reverse transsulfuration in the Mycobacterium tuberculosis complex reveals that methionine is the preferred sulfur source for pathogenic mycobacteria. J Biol Chem 280:8069–8078PubMedGoogle Scholar
  96. Wirtz M, Berkowitz O, Droux M, Hell R (2001) The cysteine synthase complex from plants. Mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein–protein interaction. Eur J Biochem 268:686–693PubMedGoogle Scholar
  97. Wirtz M, Droux M, Hell R (2004) O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot 55:1785–1798PubMedGoogle Scholar
  98. Yadava U, Shukla BK, Roychoudhury M, Kumar D (2015) Pyrazolo[3,4-d]pyrimidines as novel inhibitors of O-acetyl-l-serine sulfhydrylase of Entamoeba histolytica: an in silico study. J Mol Model 21:96PubMedGoogle Scholar
  99. Yamagata S (1976) O-Acetylserine and O-acetylhomoserine sulfhydrylase of yeast. Subunit structure. J Biochem 80:787–797PubMedGoogle Scholar
  100. Zhao C, Moriga Y, Feng B, Kumada Y, Imanaka H, Imamura K, Nakanishi K (2006) On the interaction site of serine acetyltransferase in the cysteine synthase complex from Escherichia coli. Biochem Biophys Res Commun 341:911–916PubMedGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations