3 Biotech

, 9:28 | Cite as

Principles of gene editing techniques and applications in animal husbandry

  • Shengwang Jiang
  • Qingwu W. ShenEmail author
Review Article


Gene editing techniques were developed chronologically, which include zinc finger nuclease, transcription activator-like effector nuclease and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas 9). In this review, the working principles of these techniques were first introduced, their advantages and disadvantages were then discussed, their application in animal husbandry were elaborated, and finally human concerns about gene editing were presented. Compared to the two former techniques, the third-generation gene editing technique CRISPR/Cas9 has higher targeting efficiency and accuracy, less off-target effect, lower cytotoxicity and lower costs for being easier for vector design and manipulation. Although some people may concern about social or ethical issues, the benefits of gene editing certainly overweigh its demerits. The three gene editing techniques have been successfully used to improve the production and quality of livestock products, animal fertility, resistance to diseases, and welfare in animal husbandry. With legislation and the development of gene editing technology per se, it anticipatable that gene editing will have a broader utilization and make our lives happier.


Gene editing ZFN TALEN CRISPR/Cas9 



This work was supported by National Natural Science Foundation of China (Grant number 31571862).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Ann Rev Phytopathol 48:419–436. CrossRefGoogle Scholar
  2. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512. CrossRefPubMedGoogle Scholar
  3. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(Pt 8):2551–2561. CrossRefPubMedGoogle Scholar
  4. Bonas U, Stall RE, Staskawicz B (1989) Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genetics MGG 218(1):127–136CrossRefGoogle Scholar
  5. Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, Whitelaw CB, Archibald AL (2017) Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathogens 13(2):e1006206. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC (2016) Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 34(5):479–481. CrossRefPubMedGoogle Scholar
  7. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550(7676):407–410. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, dos Santos-Neto PC, Nguyen TH, Creneguy A, Brusselle L, Anegon I, Menchaca A (2015) Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PloS One 10(8):e0136690. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Davis D, Stokoe D (2010) Zinc finger nucleases as tools to understand and treat human diseases. BMC Med 8:42. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12(4):393–394. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fujii W, Kano K, Sugiura K, Naito K (2013) Repeatable construction method for engineered zinc finger nuclease based on overlap extension PCR and TA-cloning. PloS One 8(3):e59801. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fujii W, Onuma A, Yoshioka S, Nagashima K, Sugiura K, Naito K (2015) Finding of a highly efficient ZFN pair for Aqpep gene functioning in murine zygotes. J Reprod Dev 61(6):589–593. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gaind N (2016) Brain implants and gene-editing enhancements worry US public. Nature. CrossRefGoogle Scholar
  16. Gandhi PT, Athmaram TN, Arunkumar GR (2016) Novel nicotine analogues with potential anti-mycobacterial activity. Bioorg Med Chem 24(8):1637–1647. CrossRefPubMedGoogle Scholar
  17. Heyer WD, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Ann Rev Genetics 44:113–139. CrossRefGoogle Scholar
  18. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433CrossRefGoogle Scholar
  19. Jarman AP, Grau Y, Jan LY, Jan YN (1993) atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73(7):1307–1321CrossRefGoogle Scholar
  20. Jin L, Deng Y, He N, Wang L, Weng M (2018) Polyethylenimine-mediated CCR5 gene knockout using transcription activator-like effector nucleases. J Biomed Nanotechnol 14(3):546–552. CrossRefPubMedGoogle Scholar
  21. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93(3):1156–1160CrossRefGoogle Scholar
  23. Klug A (2010) The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Quart Rev Biophys 43(1):1–21. CrossRefGoogle Scholar
  24. Ledford H (2017) Gene-edited cows, rogue clinics, speedier drug approvals: the challenges facing Trump’s FDA chief. Nature 541(7636):146–147. CrossRefPubMedGoogle Scholar
  25. Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, Cheng CH, Dawid IB, Chen Y, Zhao H (2012) Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci USA 109(43):17484–17489. CrossRefPubMedGoogle Scholar
  26. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30(5):390–392. CrossRefPubMedGoogle Scholar
  27. Li H, Wang G, Hao Z, Zhang G, Qing Y, Liu S, Qing L, Pan W, Chen L, Liu G, Zhao R, Jia B, Zeng L, Guo J, Zhao L, Zhao H, Lv C, Xu K, Cheng W, Li H, Zhao HY, Wang W, Wei HJ (2016) Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer. Sci Rep 6:33675. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li M, Ouyang H, Yuan H, Li J, Xie Z, Wang K, Yu T, Liu M, Chen X, Tang X, Jiao H, Pang D. (Bethesda (2018) Site-specific Fat-1 knock-in enables significant decrease of n-6PUFAs/n-3PUFAs ratio in pigs. G3 (Bethesda, Md) 8(5):1747–1754. CrossRefPubMedCentralGoogle Scholar
  29. Liu J, Gaj T, Wallen MC, Barbas CF 3rd (2015) Improved cell-penetrating zinc-finger nuclease proteins for precision genome engineering. Mol Ther Nucleic Acids 4:e232. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Luo J, Song Z, Yu S, Cui D, Wang B, Ding F, Li S, Dai Y, Li N (2014) Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PloS One 9(4):e95225. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ma S, Chang J, Wang X, Liu Y, Zhang J, Lu W, Gao J, Shi R, Zhao P, Xia Q (2014) CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori. Sci Rep 4:4489. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mao C, Tao Y (2015) Current progress of genome editing techniques. Chem Life 35(1):96–104. CrossRefGoogle Scholar
  34. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182. CrossRefPubMedGoogle Scholar
  35. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501. CrossRefPubMedGoogle Scholar
  36. Nerys-Junior A, Braga-Dias LP, Pezzuto P, Cotta-de-Almeida V, Tanuri A (2018) Comparison of the editing patterns and editing efficiencies of TALEN and CRISPR-Cas9 when targeting the human CCR5 gene. Genetics Mol Biol 41(1):167–179. CrossRefGoogle Scholar
  37. Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252(5007):809–817CrossRefGoogle Scholar
  38. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(Pt 3):653–663. CrossRefPubMedGoogle Scholar
  39. Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham AJ, McLaren DG, Whitelaw CB, Fahrenkrug SC (2015) Genome edited sheep and cattle. Transgenic Res 24(1):147–153. CrossRefPubMedGoogle Scholar
  40. Qian L, Tang M, Yang J, Wang Q, Cai C, Jiang S, Li H, Jiang K, Gao P, Ma D, Chen Y, An X, Li K, Cui W (2015) Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep 5:14435. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Qiu Z, Liu M, Chen Z, Shao Y, Pan H, Wei G, Yu C, Zhang L, Li X, Wang P, Fan HY, Du B, Liu B, Liu M, Li D (2013) High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Res 41(11):e120. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ricroch AE, Henard-Damave MC (2016) Next biotech plants: new traits, crops, developers and technologies for addressing global challenges. Crit Rev Biotechnol 36(4):675–690. CrossRefPubMedGoogle Scholar
  43. Ruan J, Xu J, Chen-Tsai RY, Li K (2017) Genome editing in livestock: are we ready for a revolution in animal breeding industry? Transgenic Res 26(6):715–726. CrossRefPubMedGoogle Scholar
  44. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8(1):67–69. CrossRefPubMedGoogle Scholar
  45. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459(7245):437–441. CrossRefPubMedGoogle Scholar
  46. Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, Zhang L, Guschin D, Fong LK, Vu BJ, Meng X, Urnov FD, Rebar EJ, Gregory PD, Zhang HS, Jaenisch R (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146(2):318–331. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Stern A, Keren L, Wurtzel O, Amitai G, Sorek R (2010) Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genetics TIG 26 (8):335–340. CrossRefPubMedGoogle Scholar
  48. Sugano SS, Nishihama R, Shirakawa M, Takagi J, Matsuda Y, Ishida S, Shimada T, Hara-Nishimura I, Osakabe K, Kohchi T (2018) Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. bioRxiv 13(10):e0205117. CrossRefGoogle Scholar
  49. Sung YH, Jin Y, Kim S, Lee HW (2014) Generation of knockout mice using engineered nucleases. Methods 69(1):85–93. CrossRefPubMedGoogle Scholar
  50. Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29(8):695–696. CrossRefPubMedGoogle Scholar
  51. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459(7245):442–445. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wang X, Cai B, Zhou J, Zhu H, Niu Y, Ma B, Yu H, Lei A, Yan H, Shen Q, Shi L, Zhao X, Hua J, Huang X, Qu L, Chen Y (2016a) Correction: disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PloS One 11(11):e0167322. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wang X, Niu Y, Zhou J, Yu H, Kou Q, Lei A, Zhao X, Yan H, Cai B, Shen Q, Zhou S, Zhu H, Zhou G, Niu W, Hua J, Jiang Y, Huang X, Ma B, Chen Y (2016b) Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Sci Rep 6:32271. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wei Y, Chesne MT, Terns RM, Terns MP (2015) Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic Acids Res 43(3):1749–1758. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wright DA, Li T, Yang B, Spalding MH (2014) TALEN-mediated genome editing: prospects and perspectives. Biochem J 462(1):15–24. CrossRefPubMedGoogle Scholar
  56. Wu H, Wang Y, Zhang Y, Yang M, Lv J, Liu J, Zhang Y (2015) TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci USA 112(13):E1530–E1539. CrossRefPubMedGoogle Scholar
  57. Xiao A, Hu YY, Wang WY, Yang ZP, Wang ZX, Huang P, Tong XJ, Zhang B, Lin S (2011) Progress in zinc finger nuclease engineering for targeted genome modification. Yi chuan = Hereditas 33(7):665–683CrossRefGoogle Scholar
  58. Xu L, Yang H, Gao Y, Chen Z, Xie L, Liu Y, Liu Y, Wang X, Li H, Lai W, He Y, Yao A, Ma L, Shao Y, Zhang B, Wang C, Chen H, Deng H (2017) CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther 25(8):1782–1789. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yu S, Luo J, Song Z, Ding F, Dai Y, Li N (2011) Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res 21(11):1638–1640. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yu B, Lu R, Yuan Y, Zhang T, Song S, Qi Z, Shao B, Zhu M, Mi F, Cheng Y (2016) Efficient TALEN-mediated myostatin gene editing in goats. BMC Dev Biol 16(1):26. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhang K, Raboanatahiry N, Zhu B, Li M (2017) Progress in genome editing technology and its application in plants. Front Plant Sci 8:177. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zhang J, Cui ML, Nie YW, Dai B, Li FR, Liu DJ, Liang H, Cang M (2018) CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus. FEBS J 285(15):2828–2839. CrossRefPubMedGoogle Scholar
  63. Zhou W, Wan Y, Guo R, Deng M, Deng K, Wang Z, Zhang Y, Wang F (2017) Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9. PloS One 12(10):e0186056. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
  2. 2.College of Food Science and TechnologyHunan Agricultural UniversityChangshaChina

Personalised recommendations