Advertisement

3 Biotech

, 9:25 | Cite as

Bioethanol production from agarophyte red seaweed, Gelidium elegans, using a novel sample preparation method for analysing bioethanol content by gas chromatography

  • Mohammad Javad HessamiEmail author
  • Sit Foon Cheng
  • Ranga Rao Ambati
  • Yeong Hui Yin
  • Siew Moi Phang
Original Article
  • 15 Downloads

Abstract

In this study, Gelidium elegans is investigated for ethanol production. A combination of factors including different temperatures, acid concentration and incubation time was evaluated to determine the suitable saccharification conditions. The combination of 2.5% (w/v) H2SO4 at 120 °C for 40 min was selected for hydrolysis of the seaweed biomass, followed by purification, and fermentation to yield ethanol. The galactose and glucose were dominant reducing sugars in the G. elegans hydrolysate and under optimum condition of dilute acid hydrolysis, 39.42% of reducing sugars was produced and fermentation resulted in ethanol concentration of 13.27 ± 0.47 g/L. A modified method was evaluated for sample preparation for gas chromatography (GC) analysis of the ethanol content. A solvent mixture of acetonitrile and iso-butanol precipitated dissolved organic residues and reduced water content in GC samples at least by 90%. Results showed that this method could be successfully used for bioethanol production from seaweed.

Keywords

G. elegans Seaweed Sample preparation Gas chromatography Bioethanol 

Abbreviations

GC

Gas chromatography

CO2

Carbon dioxide

NITE

National institute of technology evaluation

YPD

Yeast potato dextrose

CFU

Colony-forming unit

H2SO4

Sulphuric acid

FID

Flame ionisation detector

EtOH

Ethanol

Conc

Concentration

ND

Not detected

DW

Dry weight

Notes

Acknowledgements

Authors acknowledge University of Malaya for providing University of Malaya Research Grant (Project no: PV026-2012), GC002B-15SBS and HICoE Grant IOES-2014F. We are grateful to the Algae Research Laboratory, University of Malaya members, specifically my good friends Dr. Bahram Barati, Dr. Vejeysri Vello and Mr. Hamed Nassrolahi who assisted us in this research work.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

References

  1. Adams JM, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21(5):569–574CrossRefGoogle Scholar
  2. Canfield DV, Smith MD, Adams HJ, Houston ER (1998) Selection of an Internal Standard for postmortem ethanol analysis. Civil Aeromedical Institute, Federal Aviation Administration, OklahamaGoogle Scholar
  3. Chia SR, Chew KW, Show PL, Yap YJ, Ong HC, Ling TC, Chang JS (2018) Analysis of economic and environmental aspects of microalgae bio-refinery for biofuels production: a review. Biotechnol J 13(6):1700618CrossRefGoogle Scholar
  4. De Zeeuw J, Luong J (2002) Developments in stationary phase technology for gas chromatography. Trends Anal Chem 21(9):594–607CrossRefGoogle Scholar
  5. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628CrossRefGoogle Scholar
  6. Harter LN (1960) Critical values for Duncan’s new multiple range test. Biometrics 16:671–685CrossRefGoogle Scholar
  7. Hessami MJ, Phang SM, Salleh A, Rabiei R (2018a) Evaluation of tropical seaweeds as feedstock for bioethanol production. Int J Environ Sci Technol 15(5):977–992CrossRefGoogle Scholar
  8. Hessami MJ, Aishah S, Phang SM (2018b) Bioethanol a by-product of agar and carrageenan production industry from the tropical red seaweeds, Gracilaria manilaensis and Kappaphycus alvarezii. Iran J Fish Sci.  https://doi.org/10.22092/ijfs.2018.117104 CrossRefGoogle Scholar
  9. Hong KK, Vongsangnk W, Vemuri GN, Nielsen J (2011) Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc Natl Acad Sci 108(29):12179–12184CrossRefGoogle Scholar
  10. Hou X, Hansen JH, Bjerre AB (2015) Integrated bioethanol and protein production from brown seaweed Laminaria digitata. Bioresour Technol 197:310–317CrossRefGoogle Scholar
  11. Khambhaty Y, Mody K, Gandhi MR, Thampy S, Maiti P, Brahmbhatt H, Eswaran K, Pushpito K, Ghosh PK (2012) Kappaphycus alvarezii as a source of bioethanol. Bioresour Technol 103(1):180–185CrossRefGoogle Scholar
  12. Kim JH, Shome B, Liao TH, Pierce JG (1967) Analysis of neutral sugars by gas liquid chromatography of alditol acetates: application to thyrotropic hormone and other glycoproteins. Anal Biochem 20(2):258–274CrossRefGoogle Scholar
  13. Kim HM, Wi SG, Jung S, Song Y, Bae HJ (2015) Efficient approach for bioethanol production from red seaweed Gelidium amansii. Bioresour Technol 175:128–134CrossRefGoogle Scholar
  14. Kuhn ER (2002) Water injections in GC how wet can you get? LCGC Asia Pac 5(3):30–32Google Scholar
  15. Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS (2011) Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol Bioeng 108(3):621–631CrossRefGoogle Scholar
  16. Lenihan P, Orozco A, O’neill E, Ahmad M, Rooney D, Walker G (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156(2):395–403CrossRefGoogle Scholar
  17. Lin X, Fan J, Wen Q, Li R, Jin X, Wu J, Qian W, Liu D, Xie J, Bai J, Ying H (2014) Optimization and validation of a GC–FID method for the determination of acetone-butanol-ethanol fermentation products. J Chromatogr Sci 52(3):264–270CrossRefGoogle Scholar
  18. Maranduba HL, Robra S, NascimentoI A, da Cruz RS, Rodrigues LB, de Almeida Neto JA (2015) Reducing the life cycle GHG emissions of microalgal biodiesel through integration with ethanol production system. Bioresour Technol 194:21–27CrossRefGoogle Scholar
  19. Meinita MDN, Marhaeni B, Winanto T, Jeong GT, Khan MNA, Hong YK (2013) Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J Appl Phycol 25(6):1957–1961CrossRefGoogle Scholar
  20. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428CrossRefGoogle Scholar
  21. Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33CrossRefGoogle Scholar
  22. Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ (2012) Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol 108:83–88CrossRefGoogle Scholar
  23. Ra CH, Jeong GT, Shin MK, Kim SK (2013) Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresour Technol 140:421–425CrossRefGoogle Scholar
  24. Salles-Filho SLM, de Castro PFD, Bin A, Edquist C, Ferro AFP, Corder S (2017) Perspectives for the Brazilian bioethanol sector: the innovation driver. Energy Policy 108:70–77CrossRefGoogle Scholar
  25. Santos FJ, Galceran MT (2002) The application of gas chromatography to environmental analysis. Trends Anal Chem 21(9):672–685CrossRefGoogle Scholar
  26. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240CrossRefGoogle Scholar
  27. Song H, Zhang Q, Zhang Z, Wang J (2010) In vitro antioxidant activity of polysaccharides extracted from Bryopsis plumosa. Carbohydr Polym 80(4):1057–1061CrossRefGoogle Scholar
  28. Sudhakar K, Mamat R, Samykano M, Azmi WH, Ishak WFW, Yusaf T (2018) An overview of marine macroalgae as bioresource. Renew Sustain Energy Rev 91:165–179CrossRefGoogle Scholar
  29. Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(3):472–499Google Scholar
  30. Timson DJ (2007) Galactose metabolism in Saccharomyces cerevisiae. Dyn Biochem Process Biotechnol Mol Biol 1(1):63–73Google Scholar
  31. Vuppaladadiyam A, Yao JG, Florin N, George A, Wang X, Labeeuw L, Jiang Y, Davis RW, Abbas A, Ralph P, Fennell PS, Zhao M (2018) Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization. ChemSusChem 11(2):334–355CrossRefGoogle Scholar
  32. Wang X, Liu X, Wang G (2011) Two stage hydrolysis of invasive algal feedstock for ethanol fermentation. J Integr Plant Biol 53(3):246–252CrossRefGoogle Scholar
  33. Wi SG, Kim HJ, Mahadevan SA, Yang DJ, Bae HJ (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Technol 100(24):6658–6660CrossRefGoogle Scholar
  34. Yadav KS, Naseeruddin S, Prashanthi GS, Sateesh L, Rao LV (2011) Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour Technol 102(11):6473–6478CrossRefGoogle Scholar
  35. Yanagisawa M, Nakamura K, Ariga O, Nakasaki K (2011) Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Proc Biochem 46:2111–2116CrossRefGoogle Scholar
  36. Yoon MH, Lee YW, Lee CH, Seo YB (2012) Simultaneous production of bio-ethanol and bleached pulp from red algae. Bioresour Technol 126:198–201CrossRefGoogle Scholar
  37. Yun EJ, Lee S, Kim HT, Pelton JG, Kim S, Ko HJ, Choi G, Kim KH (2014) The novel catabolic pathway of 3,6-anhydro-l-galactose, the main component of red macroalgae, in a marine bacterium. Environ Microbiol 17(5):1677–1688CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Mohammad Javad Hessami
    • 1
    Email author
  • Sit Foon Cheng
    • 2
  • Ranga Rao Ambati
    • 3
    • 4
  • Yeong Hui Yin
    • 3
  • Siew Moi Phang
    • 1
    • 3
  1. 1.Institute of Biological Sciences, Faculty of SciencesUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Chemistry, Faculty of SciencesUniversity of MalayaKuala LumpurMalaysia
  3. 3.Institute of Ocean and Earth SciencesUniversity of MalayaKuala LumpurMalaysia
  4. 4.Department of BiotechnologyVignan’s Foundation for Science, Technology and Research (Deemed to be University)GunturIndia

Personalised recommendations