Advertisement

3 Biotech

, 9:12 | Cite as

The endophytic capacity of the entomopathogenic fungus Beauveria bassiana caused inherent physiological response in two barley (Hordeum vulgare) varieties

  • Guadalupe Monserrat Veloz-Badillo
  • Jessica Riveros-Ramírez
  • Alejandro Angel-Cuapio
  • Oscar Arce-Cervantes
  • Benito Flores-Chávez
  • Josefa Espitia-López
  • Octavio Loera
  • Paul Misael Garza-LópezEmail author
Original Article
  • 52 Downloads

Abstract

In this study, the endophytic capacity of B. bassiana was determined for two barley (Hordeum vulgare) varieties, Josefa and Esmeralda, inoculated with a seedling immersion at three different concentrations (1 × 106, 1 × 107 and 1 × 108 conidia/mL). Seedling length and chlorophyll content were found to be not affected when inoculated with the entomopathogenic fungus, in both barley varieties. However, the colonisation percentage was found to be significantly lower with the inoculum concentration 1 × 106 conidia/mL for both barley varieties (P < 0.05) when compared to the other concentrations. Furthermore, a principal component analysis indicated that 96.23% of the variability in the data could be explained with two components. This analysis showed that the seedling length and chlorophyll content were positively correlated in both barley varieties for the 1 × 107 conidia/mL concentration. Likewise, a positive correlation was observed for colonisation percentage and treatment with 1 × 108 conidia/mL in the Josefa variety only. This is the first study in which the endophytic capacity of B. bassiana was evaluated in two different barley varieties, with the Josefa variety found to be the most susceptible.

Keywords

Beauveria bassiana Endophytic capacity Barley Colonisation Principal component analysis 

Notes

Acknowledgements

This study was financed by the PRODEP project UAEH-PTC-687 and the Universidad Autónoma del Estado de Hidalgo.

Author contributions

PMG-L designed and conducted the experiments and wrote the manuscript; GMV-B and JR-R conducted the experiments; AA-C, OA-C, BF-C and OL contributed to the experimental design and writing of the manuscript; and JE-L contributed to the statistical analysis and writing of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

References

  1. Akutse KS, Fiaboe KKM, Van den Berg J, Ekesi S, Maniania NK (2014) Effects of endophyte colonization of Vicia faba (Fabaceae) plants on the life–history of leafminer parasitoids Phaedrotoma scabriventris (Hymenoptera: Braconidae) and Diglyphus isaea (Hymenoptera: Eulophidae). PLoS One 9:e109965.  https://doi.org/10.1371/journal.pone.0109965 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274.  https://doi.org/10.1046/j.1461-0248.2000.00159.x CrossRefGoogle Scholar
  3. Bamisile BS, Dash CK, Akutse KS, Keppanan R, Wang L (2018) Fungal endophytes: beyond herbivore management. Front Microbiol 9:544.  https://doi.org/10.3389/fmicb.2018.00544 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Garza-López PM, Konigsberg M, Gómez-Quiroz LE, Loera O (2012) Physiological and antioxidant response by Beauveria bassiana Bals (Vuill.) to different oxygen concentrations. World J Microbiol Biotechnol 28:353–359.  https://doi.org/10.1007/s11274-011-0827-y CrossRefPubMedGoogle Scholar
  5. Gianquinto G, Sambo P, Bona S (2003) The use of SPAD-502 chlorophyll meter for dynamically optimizing the nitrogen supply in potato crop: a methodological approach. Acta Hortic 32:197–204.  https://doi.org/10.17660/ActaHortic.2003.607.30 CrossRefGoogle Scholar
  6. Greenfield M, Gómez-Jiménez MI, Ortiz V, Vega FE, Kramer M, Parsa S (2016) Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biol Control 95:40–48.  https://doi.org/10.1016/j.biocontrol.2016.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gurulingappa P, Sword GA, Murdoch G, McGee PA (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55:34–41.  https://doi.org/10.1016/j.biocontrol.2010.06.011 CrossRefGoogle Scholar
  8. Hyakumachi M, Kubota M (2004) Fungi as plant growth promoter and disease suppressor. In Arora DK (ed) Fungal biotechnology in agricultural, food, and environmental applications. Marcel Dekker, Inc, New YorkGoogle Scholar
  9. Jaber LR, Owley BH (2018) Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol Control 116:36–45.  https://doi.org/10.1016/j.biocontrol.2017.01.018 CrossRefGoogle Scholar
  10. Madeira AC, Ferreira A, Varennes A, Vieira MI (2003) SPAD meter versus tristimulus colorimeter to estimate chlorophyll content and leaf color in sweet pepper. Commun Soil Sci Plant 34:2461–2470.  https://doi.org/10.1081/CSS-120024779 CrossRefGoogle Scholar
  11. McKinnon AC, Saari S, Moran-Diez ME, Meyling NV, Raad M, Glare TR (2017) Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential. Biocontrol 62:1–17.  https://doi.org/10.1007/s10526-016-9769-5 CrossRefGoogle Scholar
  12. Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270.  https://doi.org/10.1016/j.jip.2008.01.01 CrossRefPubMedGoogle Scholar
  13. Ownley BH, Gwinn KD, Vega FE (2010) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. Biocontrol 55:113–128.  https://doi.org/10.1007/s10526-009-9241-x CrossRefGoogle Scholar
  14. Parsa S, Ortiz V, Vega FE (2013) Establishing fungal entomopathogens as endophytes: towards endophytic biological control. JoVE J Vis Exp 74:1–5.  https://doi.org/10.3791/50360 CrossRefGoogle Scholar
  15. Parsa S, Ortiz V, Gómez-Jiménez MI, Kramer M, Vega FE (2018) Root environment is a key determinant of fungal entomopathogen endophytism following seed treatment in the common bean, Phaseolus vulgaris. Biol Control 116:74–81.  https://doi.org/10.1016/j.biocontrol.2016.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Pérez-Guzmán D, Montesinos-Matías R, Arce-Cervantes O, Gómez-Quiroz LE, Loera O, Garza-López PM (2016) Reactive oxygen species production, induced by atmospheric modification, alter conidial quality of Beauveria bassiana. J Appl Microbiol 121:453–460.  https://doi.org/10.1111/jam.13156 CrossRefPubMedGoogle Scholar
  17. Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197CrossRefGoogle Scholar
  18. Posada F, Aime MC, Peterson SW, Rehner SA, Vega FE (2007) Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol Res 111:748–757.  https://doi.org/10.1016/j.mycres.2007.03.006 CrossRefPubMedGoogle Scholar
  19. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142e160.  https://doi.org/10.1111/j.1574-6941.2007.00375.x CrossRefGoogle Scholar
  20. Renuka S, Ramanujam B, Poornesha B (2016) Endophytic ability of different isolates of entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin in stem and leaf tissues of maize (Zea mays L.). Indian J Microbiol 56:126–133.  https://doi.org/10.1007/s12088-016-0574-8 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Rondot Y, Reineke A (2018) Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects. Biol Control 116:82–89.  https://doi.org/10.1016/j.biocontrol.2016.10.006 CrossRefGoogle Scholar
  22. Sánchez-Rodríguez AR, Raya-Díaz S, Zamarreño AM, García-Mina JM, del Campillo MC, Quesada-Moraga E (2018) An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biol Control 116:90–102.  https://doi.org/10.1016/j.biocontrol.2017.01.012 CrossRefGoogle Scholar
  23. Servicio de Información Agroalimentaria y Pesquera (SIAP) (2017) Atlas Agroalimentario. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, MexicoGoogle Scholar
  24. Tall S, Meyling NV (2018) Probiotics for plants? Growth promotion by the entomopathogenic fungus Beauveria bassiana depends on nutrient availability. Microb Ecol.  https://doi.org/10.1007/s00248-018-1180-6 CrossRefPubMedGoogle Scholar
  25. Tefera T, Vidal S (2009) Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. Biocontrol 54:663–669.  https://doi.org/10.1007/s10526-009-9216-y CrossRefGoogle Scholar
  26. Vega FE (2008) Insect pathology and fungal endophytes. J Invertebr Pathol 98:277–279.  https://doi.org/10.1016/j.jip.2008.01.008 CrossRefPubMedGoogle Scholar
  27. Vega FE (2018) The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110:4–30.  https://doi.org/10.1080/00275514.2017.1418578 CrossRefPubMedGoogle Scholar
  28. Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Infante F, Castillo A, Arnold AE (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecol 3:122–138.  https://doi.org/10.1016/j.funeco.2009.07.002 CrossRefGoogle Scholar
  29. Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276.  https://doi.org/10.2307/3545919 CrossRefGoogle Scholar
  30. Zimmermann G (2007) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17:553–596.  https://doi.org/10.1080/09583150701309006 CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Guadalupe Monserrat Veloz-Badillo
    • 1
  • Jessica Riveros-Ramírez
    • 1
  • Alejandro Angel-Cuapio
    • 2
  • Oscar Arce-Cervantes
    • 1
  • Benito Flores-Chávez
    • 1
  • Josefa Espitia-López
    • 1
  • Octavio Loera
    • 3
  • Paul Misael Garza-López
    • 1
    Email author
  1. 1.Instituto de Ciencias AgropecuariasUniversidad Autónoma del Estado de HidalgoTulancingoMexico
  2. 2.División de Ingeniería Química y BioquímicaTecnológico de Estudios Superiores de EcatepecEcatepec de MorelosMexico
  3. 3.Departamento de BiotecnologíaUniversidad Autónoma Metropolitana IztapalapaMexico CityMexico

Personalised recommendations