Advertisement

3 Biotech

, 9:6 | Cite as

Selection of Saccharomyces cerevisiae isolates for ethanol production in the presence of inhibitors

  • Keyla Tortoló Cabañas
  • Irina Charlot Peña-Moreno
  • Denise Castro Parente
  • Antonio Bell García
  • Roxana García Gutiérrez
  • Marcos Antonio de Morais JrEmail author
Original Article

Abstract

Eight yeast isolates identified as Saccharomyces cerevisiae were recovered from molasses-using Cuban distilleries and discriminated by nucleotide sequence analysis of ITS locus. The isolates L/25-7-81 and L/25-7-86 showed the highest ethanol yield from sugarcane juice, while L/25-7-12 and L/25-7-79 showed high ethanol yield from sugarcane molasses. The isolate L/25-7-86 also displayed high fermentation capacity when molasses was diluted with vinasse. In addition, stress tolerance was evaluated on the basis of growth in the presence of inhibitors (acetic acid, lactic acid, 5-hydroxymethylfurfural and sulfuric acid) and the results indicated that L/25-7-77 and L/25-7-79 congregated the highest score for cross-tolerance and fermentation capacity. Hence, these isolates, especially L/25-7-77, could serve as potential biological platform for the arduous task of fermenting complex substrates that contain inhibitors. The use of these yeasts was discussed in the context of second-generation ethanol and the environmental and economic implications of the use of vinasse, saving the use of water for substrate dilution.

Keywords

Fermentation capacity 5-HMF Stress resistance Vinasse Yeast selection Weak organic acid 

Notes

Acknowledgements

K. T. was supported by the United Nations University (UNU-BIOLAC Biotechnology for Latin America and The Caribbean) and by the Pérez-Guerrero Trust Fund for South–South Cooperation of UNDP in the frameworks of projects INT/13/K08 and INT/16/K10. This work was partially sponsored by UNU-BIOLAC program and by the Bioethanol Research Network of the State of Pernambuco (CNPq-FACEPE/PRONEM APQ-1452-2.01/10).

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

References

  1. Aguilar R, Ramírez JA, Garrote G, Vázquez M (2002) Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng 55:309–318.  https://doi.org/10.1016/S0260-8774(02)00106-1 CrossRefGoogle Scholar
  2. Almeida J, Modig T, Petersson A, Hähn-Hägerdal B, Lidé G, Gorwa-Grauslund MF (2008) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Tech Biotechnol 82:340–349.  https://doi.org/10.1002/jctb.1676 CrossRefGoogle Scholar
  3. Barros de Souza R, de Menezes JA, Rodrigues de Souza RF, Dutra ED, de Morais MA (2015) Mineral composition of the sugarcane juice and its influence on the ethanol fermentation. Appl Biochem Biotechnol 175: 209–222.  https://doi.org/10.1007/s12010-014-1258-7 CrossRefGoogle Scholar
  4. Basílio ACM, Araújo PRL, Morais JOF, Silva-Filho EA, de Morais MA, Simões DA (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56:322–326.  https://doi.org/10.1007/s00284-007-9085-5 CrossRefPubMedGoogle Scholar
  5. Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163.  https://doi.org/10.1111/j.1567-1364.2008.00428.x CrossRefPubMedGoogle Scholar
  6. Basso TO, Gomes FS, Lopes ML, de Amorim HV, Eggleston G, Basso LC (2014) Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Antonie Van Leeuwenhoek 105:169–177.  https://doi.org/10.1007/s10482-013-0063-6 CrossRefPubMedGoogle Scholar
  7. Beckner M, Ivey M, Phister T (2011) Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 53:387–394.  https://doi.org/10.1111/j.1472-765X.2011.03124.x CrossRefPubMedGoogle Scholar
  8. Bischoff K, Liu S, Leathers TD, Worthington RE, Rich JO (2009) Modeling bacterial contamination of fuel ethanol fermentation. Biotechnol Bioeng 103:117–122.  https://doi.org/10.1002/bit.22244 CrossRefPubMedGoogle Scholar
  9. Christofoletti CA, Escher JP, Correia JE, Marinho JF, Fontanetti CS (2013) Sugarcane vinasse: environmental implications of its use. Waste Manag 33:2752–2761.  https://doi.org/10.1016/j.wasman.2013.09.005 CrossRefPubMedGoogle Scholar
  10. Da Silva-Filho E, Santos SK, Resende AM, Morais JO, de Morais MA, Simões DA (2005a) Yeast population dynamics of industrial fuel-ethanol fermentation process assessed by PCR fingerprinting. Antonie Van Leeuwenhoek 88:13–23.  https://doi.org/10.1007/s10482-004-7283-8 CrossRefPubMedGoogle Scholar
  11. Da Silva-Filho E, Melo HF, Antunes DF, dos Santos SK, Resende MA, Simões DA (2005b) Isolation by genetics and physiological characteristics of a fuel-ethanol fermentative S. cerevisiae strain with potential for genetic manipulation. J Ind Microbiol Biotechnol 32:481–486.  https://doi.org/10.1007/s10295-005-0027-6 CrossRefPubMedGoogle Scholar
  12. De Melo H, Bonini BM, Thevelein J, Simões DA, de Morais MA (2010) Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. J Appl Microbiol 109:116–127.  https://doi.org/10.1111/j.1365-2672.2009.04633.x CrossRefPubMedGoogle Scholar
  13. Della-Bianca BE1, Basso TO, Stambuk BU, Basso LC, Gombert AK (2013) What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 97:979–991.  https://doi.org/10.1007/s00253-012-4631-x CrossRefPubMedGoogle Scholar
  14. Deparis Q, Claes A, Foulquié-Moreno MR, Thevelein JM (2017) Engineering tolerance to industrially relevant stress factors in yeast cell factories. FEMS Yeast Res 17:fox036.  https://doi.org/10.1093/femsyr/fox036 CrossRefPubMedCentralGoogle Scholar
  15. Dutra E, Neto A, Barros R, de Morais MA, Tabosa JN, Simões R (2013) Ethanol production from the stem juice of different sweet sorghum cultivars in the state of Pernambuco, northeast of Brazil. Sugar Tech 15:316–321.  https://doi.org/10.1007/s12355-013-0240-y CrossRefGoogle Scholar
  16. García R, Otero M (2015) Almacenamiento de mieles: reacciones de deterioro y sus consecuencias para el crecimiento microbiano. In: Aprovechamiento de las mieles de la caña de azúcar. Conocimientos y potencial. ICIDCA, Havana, 1–6Google Scholar
  17. Guo Z, Olsson L (2014) Physiological response of Saccharomyces cerevisiae to weak acids present in lignocellulosic hydrolysate. FEMS Yeast Res 14:1234–1248.  https://doi.org/10.1111/1567-1364.12221 CrossRefPubMedGoogle Scholar
  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids 41:95–98Google Scholar
  19. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Biores Technol 199:103–112.  https://doi.org/10.1016/j.biortech.2015.10.009 CrossRefGoogle Scholar
  20. Kausal N, Phutela R (2015) Ethanol production from molasses and sugarcane: inoculum effects and costing. J Energy Res Environ Technol (JERET) 2:385–388Google Scholar
  21. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  22. Lancheros S, Morales D, Velásquez M (2015) Increase in second generation ethanol production by different nutritional conditions from sugarcane bagasse hydrolysate using a Saccharomyces cerevisiae native strain. Chem Eng Trans 43:223–228.  https://doi.org/10.3303/CET1543038 CrossRefGoogle Scholar
  23. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N (1999) The generation of inhibitors during dilute acid hydrolysis of softwood. Enz Microb Technol 24:151–159.  https://doi.org/10.1016/S0141-0229(98)00101-X CrossRefGoogle Scholar
  24. Liu Z (2006) Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol 73:27–36.  https://doi.org/10.1007/s00253-006-0567-3 CrossRefPubMedGoogle Scholar
  25. Liu Z, Moon J (2009) A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene 446:1–10.  https://doi.org/10.1016/j.gene.2009.06.018 CrossRefPubMedGoogle Scholar
  26. Lucena B, dos Santos BM, Moreira JLS, Moreira APB, Nunes AC, Azevedo V, Miyoshi A, Thompson FL, de Morais MA (2010) Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol 10:298.  https://doi.org/10.1186/1471-2180-10-298 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Makanjuola D, Springham D (1984) Identification of lactic acid bacteria isolated from different stages of malt and whisky distillery fermentations. J Inst Brew 90:13–19.  https://doi.org/10.1002/j.2050-0416.1984.tb04226.x CrossRefGoogle Scholar
  28. Modig T, Liden G, Taherzadeh M (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363:769–776.  https://doi.org/10.1042/bj3630769 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Naik S, Goud V, Rout P, Dalai A (2010) Production of first- and second-generation biofuels: A comprehensive review. Renew Sustain Energy Rev 14:578–597.  https://doi.org/10.1016/j.rser.2009.10.003 CrossRefGoogle Scholar
  30. Pereira J, Verheijen P, Straathof A (2016) Growth inhibition of S. cerevisiae. B. subtilis and E. coli by lignocellulosic and fermentation products. Appl Microbiol Biotechnol 100:9069–9080.  https://doi.org/10.1007/s00253-016-7642-1 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sanchez B, Bautista J (1988) Effects of furfural and 5-hydroxymethylfurfural on the fermentation of Saccharomyces cerevisiae and biomass production from Candida guilliermondii. Enz Microb Technol 10(5):315–318.  https://doi.org/10.1016/0141-0229(88)90135-4 CrossRefGoogle Scholar
  32. Sehnem N, Machado AS, Leite FC, Pita WB, de Morais MA, Ayub MA (2013) 5-Hydroxymethylfurfural induces ADH7 and ARI1 expression in tolerant industrial Saccharomyces cerevisiae strain P6H9 during bioethanol production. Biores Technol 133:190–196.  https://doi.org/10.1016/j.biortech.2013.01.063 CrossRefGoogle Scholar
  33. Steensels J, Snoek T, Meersman E, Picca Nicolino M, Voordeckers K, Verstrepen KJ (2014) Improving industrial yeasts strain: exploiting natural and artificial diversity. FEMS Microbiol Rev 38:947–995.  https://doi.org/10.1111/1574-6976.12073 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Taherzadeh M, Gustafsson L, Niklasson C (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(6):701–708.  https://doi.org/10.1007/s002530000328 CrossRefPubMedGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Keyla Tortoló Cabañas
    • 1
  • Irina Charlot Peña-Moreno
    • 3
  • Denise Castro Parente
    • 3
  • Antonio Bell García
    • 1
  • Roxana García Gutiérrez
    • 2
  • Marcos Antonio de Morais Jr
    • 3
    Email author return OK on get
  1. 1.Department of Alcohol, Yeasts and Animal FoodCuban Research Institute of Sugar Cane Byproducts (ICIDCA)La HabanaCuba
  2. 2.Department of MicrobiologyCuban Research Institute of Sugar Cane Byproducts (ICIDCA)La HabanaCuba
  3. 3.Department of GeneticsFederal University of Pernambuco (UFPE)RecifeBrazil

Personalised recommendations