3 Biotech

, 9:26 | Cite as

Sequence-based structural analysis and evaluation of polymorphism in buffalo Nod-like receptor-1 gene

  • S. K. Mishra
  • P. K. Dubey
  • Asmita Dhiman
  • Shubham Dubey
  • Deepu Verma
  • A. C. Kaushik
  • Ravinder Singh
  • S. K. Niranjan
  • V. Vohra
  • K. L. Mehrara
  • R. S. KatariaEmail author
Original Article


In this study, we have sequence characterized and analyzed the polymorphism in buffalo NOD1 (nucleotide-binding oligomerization domain 1) gene as well as its expression analysis. Full-length sequence analysis of NOD1 revealed this gene in buffalo being conserved with respect to the domain structures, similar to other species. Alternate splice variants having exon3 skipping also identified for the first time in the gene expressed in buffalo-purified peripheral blood mononuclear cells (PBMCs). Phylogenetically ruminant species were found to be clustering together and buffalo displaying maximum similarity with cattle. Sequencing of NOD1 across 12 Indian buffalo breeds identified 23 polymorphic sites within coding region, among which 16 were synonymous and 7 changes found to be non-synonymous. Four SNPs (single nucleotide polymorphisms) of them were genotyped in 393 animals belonging to 12 riverine, swamp and hybrid (riverine × swamp) buffalo populations of diverse phenotypes and utilities, showing variable allelic frequencies. Principal component analysis revealed, riverine and swamp buffaloes being distinctly placed with the distribution of breeds within the group based on the geographical isolation. Further, quantitative real-time PCR detected NOD1 expression in multiple tissues with PBMCs and lungs showing highest expression among the tissues examined. Structural analysis based on the translated amino acid sequence of buffalo NOD1 identified four protein interaction motifs LxxLL important for ligand binding. Molecular interaction analysis of iE-DAP and NOD1-LRR and their complex stability and binding-free energy studies indicated variable binding energies in buffalo and cattle NOD1. Overall, the study reveals unique structural features in buffalo NOD1, important for species-specific ligand interaction.


NOD1 Buffalo Polymorphism Alternate splicing Ligand interaction 



The work reported has been carried out under the financial support received from National Agricultural Innovation Project of ICAR, Government of India under the project scheme C2153, which is thankfully acknowledged.

Compliance with ethical standards

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest for publishing this manuscript.

Supplementary material

13205_2018_1534_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 29 KB)
13205_2018_1534_MOESM2_ESM.docx (1017 kb)
Supplementary material 2 (DOCX 1017 KB)


  1. Boyle JP, Mayle S, Parkhouse R, Monie TP (2013) Comparative genomic and sequence analysis provides insight into the molecular functionality of NOD1 and NOD2. Front Immunol 4:317. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brahma B, Kumar S, De BC, Mishra P, Patra MC, Gaur D, Chopra M, Gautam D, Mahanty S, Malik H, Malakar D (2015) Comparative genomic analysis of buffalo (Bubalus bubalis) NOD1 and NOD2 receptors and their functional role in in-vitro cellular immune response. PLoS One 10:e0119178. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, Ogura Y, Kawasaki A, Fukase K, Kusumoto S, Valvano MA (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4:702–707. CrossRefPubMedGoogle Scholar
  4. Dhiman A, Mishra SK, Dubey PK, Goyal S, Sehgal M, Niranjan SK, Sodhi M, Mishra BP, Kataria RS (2017) Identification of genetic variation in NOD-like receptor 2 gene and influence of polymorphism on gene structure and function in buffalo (Bubalus bubalis). Res Vet Sci 115:43–50. CrossRefPubMedGoogle Scholar
  5. Dubey PK, Goyal S, Aggarwal J, Gahlawat SK, Kathiravan P, Mishra BP, Kataria RS (2012) Sequence and topological characterization of Toll-like receptor 8 gene of Indian riverine buffalo (Bubalus bubalis). Trop Anim Health Prod 45:91–99. CrossRefPubMedGoogle Scholar
  6. Dubey PK, Goyal S, Kumari N, Mishra SK, Arora R, Kataria RS (2013a) Genetic diversity within 5′ upstream region of Toll-like receptor 8 gene reveals differentiation of riverine and swamp buffaloes. Meta Gene 1:24–32. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dubey PK, Goyal S, Kathiravan P, Mishra BP, Gahlawat SK, Kataria RS (2013b) Sequence characterization of river buffalo Toll-like receptor genes 1–10 reveals distinct relationship with cattle and sheep. Int J Immunogenet 40:140–148. CrossRefPubMedGoogle Scholar
  8. Fan YH, Roy S, Mukhopadhyay R, Kapoor A, Duggal P, Wojcik GL, Pass RF, Arav-Boger R (2016) Role of nucleotide-binding oligomerization domain 1 (NOD1) and its variants in human cytomegalovirus control in vitro and in vivo. Proc Natl Acad Sci USA 113:E7818–E7827. CrossRefPubMedGoogle Scholar
  9. Franchi L, Warner N, Viani K, Nunez G (2009) Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 227:106–128. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jéhanno M, Viala J, Tedin K, Taha MK, Labigne A, Zathringer U, Coyle AJ (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:1584–1587. CrossRefPubMedGoogle Scholar
  11. Goyal S, Dubey PK, Kumari N, Niranjan SK, Kathiravan P, Mishra BP, Mahajan R, Kataria RS (2014) Caprine Toll-like receptor 8 gene sequence characterization reveals close relationships among ruminant species. Int J Immunogenet 41:81–89. CrossRefPubMedGoogle Scholar
  12. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J, Almer S, Tysk C, O’morain CA, Gassull M, Binder V (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603. CrossRefPubMedGoogle Scholar
  13. Hysi P, Kabesch M, Moffatt MF, Schedel M, Carr D, Zhang Y, Boardman B, Von Mutius E, Weiland SK, Leupold W, Fritzsch C (2005) NOD1 variation, immunoglobulin E and asthma. Hum Mol Gen 14:935–941. CrossRefPubMedGoogle Scholar
  14. Inohara N, Koseki T, del Peso L, Hu Y, Yee C, Chen S, Carrio R, Merino J, Liu D, Ni J, Núñez G (1999) Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-κB. J Biol Chem 274:14560–14567CrossRefGoogle Scholar
  15. Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21:317–337. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Koller B, Bals R, Roos D, Korting HC, Griese M, Hartl D (2009) Innate immune receptors on neutrophils and their role in chronic lung disease. Eur J Clin Investig 39:535–547. CrossRefGoogle Scholar
  17. Kufer TA, Kremmer E, Alexander C, Adam AC, Philpott DJ, Sansonetti PJ (2008) The pattern-recognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction. Cell Microbiol 10:477–486. CrossRefPubMedGoogle Scholar
  18. Maharana J, Pradhan SK, De S (2017) NOD1CARD might be using multiple interfaces for RIP2-mediated CARD–CARD interaction: insights from molecular dynamics simulation. PLoS One 12:e0170232. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Manly BF (1986) Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Res Popul Ecol 28:201–218. CrossRefGoogle Scholar
  20. Mayle S, Boyle JP, Sekine E, Zurek B, Kufer TA, Monie TP (2014) Engagement of nucleotide-binding oligomerization domain-containing protein 1 (NOD1) by receptor-interacting protein 2 (RIP2) is insufficient for signal transduction. J Biol Chem 289:22900–22914. CrossRefPubMedPubMedCentralGoogle Scholar
  21. McGovern DP, Hysi P, Ahmad T, van Heel DA, Moffatt MF, Carey A, Cookson WO, Jewell DP (2005) Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet 14:1245–1250. CrossRefPubMedGoogle Scholar
  22. Mingala CN, Konnai S, Cruz LC, Onuma M, Ohashi K (2009) Comparative moleculo-immunological analysis of swamp- and riverine-type water buffaloes responses. Cytokine 46:273–282. CrossRefPubMedGoogle Scholar
  23. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Núñez G (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J Biol Chem 276:4812–4818. CrossRefPubMedGoogle Scholar
  25. Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Resour 6:288–295. CrossRefGoogle Scholar
  26. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45CrossRefGoogle Scholar
  27. Plantinga TS, Fransen J, Knevel R, Netea MG, Zwerina J, Helsen MM, van der Meer JW, van Riel PL, Schett G van der, van den Berg WB, Helm-van Mil AH (2013) Role of NOD1 polymorphism in susceptibility and clinical progression of rheumatoid arthritis. Rheumatology 52:806–814. CrossRefPubMedGoogle Scholar
  28. Proell M, Riedl SJ, Fritz JH, Rojas AM, Schwarzenbacher R (2008) The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS One 3:e2119. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sambrook J, Russell RW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  30. Sha Z, Abernathy JW, Wang S, Li P, Kucuktas H, Liu H, Peatman E, Liu Z (2009) NOD-like subfamily of the nucleotide-binding domain and leucine-rich repeat containing family receptors and their expression in channel catfish. Dev Comp Immunol 33:991–999. CrossRefPubMedGoogle Scholar
  31. Shinkai H, Matsumoto T, Tokic D, Okumura N, Terada K, Uenishi H (2015) Porcine NOD1 polymorphisms with impaired ligand recognition and their distribution in pig populations. Mol Immunol 63:305–311. CrossRefPubMedGoogle Scholar
  32. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14. CrossRefPubMedGoogle Scholar
  33. Tiszlavicz Z, Somogyvári F, Kocsis ÁK, Szolnoki Z, Sztriha LK, Kis Z, Vécsei L, Mándi Y (2009) Relevance of the genetic polymorphism of NOD1 in Chlamydia pneumoniae seropositive stroke patients. Eur J Neurol 16:1224–1229. CrossRefPubMedGoogle Scholar
  34. Tohno M, Shimazu T, Aso H, Uehara A, Takada H, Kawasaki A, Fujimoto Y, Fukase K, Saito T, Kitazawa H (2008) Molecular cloning and functional characterization of porcine nucleotide-binding oligomerization domain-1 (NOD1) recognizing minimum agonists, meso-diaminopimelic acid and meso-lanthionine. Mol Immunol 45:1807–1817. CrossRefPubMedGoogle Scholar
  35. Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, Athman R, Mémet S, Huerre MR, Coyle AJ, DiStefano PS (2004) Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5:1166–1174. CrossRefPubMedGoogle Scholar
  36. Xie J, Hodgkinson JW, Katzenback BA, Kovacevic N, Belosevic M (2013) Characterization of three Nod-like receptors and their role in antimicrobial responses of goldfish (Carassius auratus L.) macrophages to Aeromonas salmonicida and Mycobacterium marinum. Dev Comp Immunol 39:180–187. CrossRefPubMedGoogle Scholar
  37. Yang X, Coulombe-Huntington J, Kang S, Sheynkman GM, Hao T, Richardson A et al (2016) Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164:805–817. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yeo G, Holste D, Kreiman G, Burge CB (2004) Variation in alternative splicing across human tissues. Genome Biol 5:R74. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zhang ZB, Zhang W, Li RL, Li JB, Zhong JF, Zhao ZS, Huang JM (2013) Novel splice variants of the bovine PCK1 gene. Genet Mol Res 12:4028–4035. CrossRefPubMedGoogle Scholar
  40. Zurek B, Proell M, Wagner RN, Schwarzenbacher R, Kufer TA (2012) Mutational analysis of human NOD1 and NOD2 NACHT domains reveals different modes of activation. Innate Immun 18:100–111. CrossRefPubMedGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • S. K. Mishra
    • 1
  • P. K. Dubey
    • 1
  • Asmita Dhiman
    • 1
  • Shubham Dubey
    • 1
  • Deepu Verma
    • 2
  • A. C. Kaushik
    • 3
  • Ravinder Singh
    • 1
  • S. K. Niranjan
    • 1
  • V. Vohra
    • 1
  • K. L. Mehrara
    • 4
  • R. S. Kataria
    • 1
    Email author
  1. 1.ICAR-National Bureau of Animal Genetic ResourcesKarnalIndia
  2. 2.ICAR-National Dairy Research InstituteKarnalIndia
  3. 3.School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  4. 4.ICAR-Central Institute for Research on BuffaloesNabhaIndia

Personalised recommendations