Advertisement

3 Biotech

, 9:13 | Cite as

Search for Cry proteins expressed by Bacillus spp. genomes, using hidden Markov model profiles

  • J. Francisco Castillo-Esparza
  • Ismael Hernández-González
  • Jorge E. IbarraEmail author
Original Article
  • 83 Downloads

Abstract

This report focuses on a systematic search for Cry proteins in Bacillus spp. other than B. thuringiensis by analyzing reported Bacillus spp. genomes, using conserved sequences from the C-terminal half of reported Cry proteins in hidden Markov model profiles. A high-throughput model based on the use of HMMER and CD-HIT tools was designed, which identified Cry proteins. This model was used on 857 reported Bacillus spp. genomes, where 174 Cry protein sequences were identified, mostly, as expected, in B. thuringiensis genomes but, interestingly, 42 were identified on other species. Despite including 89 species of Bacillus in the HMMER analysis, Cry protein sequences were found only in genomes from species within the B. cereus group. According to the species registered at the NCBI database containing each genome, this group was formed by 18 non-B. thuringiensis strains. However, when sequences in those genomes were analyzed by multilocus sequence typing, the number of non-B. thuringiensis strains increased to 39, indicating that as many as 119 Cry protein sequences were found in four non-B. thuringiensis species. Therefore, dispersion of Cry proteins is much wider and frequent than previously thought, questioning its role in nature.

Keywords

Cry proteins Thuringiensis Markov profiles Bacillus Genomes 

Notes

Acknowledgements

Authors are in debt for the excellent technical support of Regina Basurto-Ríos, Javier Luévano-Borroel, Africa Islas-Robles, and Leandro Gabriel Ordóñez-Acevedo. JFCE and IHG received PhD fellowships from Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

13205_2018_1533_MOESM1_ESM.pdf (325 kb)
Supplementary material 1 (PDF 325 KB)
13205_2018_1533_MOESM2_ESM.pdf (108 kb)
Supplementary material 2 (PDF 108 KB)

References

  1. Barboza-Corona JE, Park HW, Bideshi DK, Federici BA (2012) The 60-kilodalton protein encoded by orf2 in the cry19A operon of Bacillus thuringiensis ssp. jegathesan functions like a C-terminal crystallization domain. Appl Environ Microbiol 78:2005–2012.  https://doi.org/10.1128/AEM.06750-11 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barloy F, Delécluse A, Nicolas L, Lecadet MM (1996) Cloning and expression of the first anaerobic toxin gene from Clostridium bifermentans subsp. malaysia, encoding a new mosquitocidal protein with homologies to Bacillus thuringiensis delta-endotoxins. J Bacteriol 178:3099–3105.  https://doi.org/10.1128/jb.178.11.3099-3105.1996 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barloy F, Lecadet MM, Delécluse A (1998) Cloning and sequencing of three new putative toxin genes from Clostridium bifermentans CH18. Gene 211:293–299.  https://doi.org/10.1016/S0378-1119(98)00122-X CrossRefPubMedGoogle Scholar
  4. Berry C, O’Neil S, Ben-dov E, Jones AF, Murphy L, Quail MA, Holden MTG, Harris D, Zaritsky A, Parkhill J (2002) Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 68:5082–5095.  https://doi.org/10.1128/AEM.68.10.5082-5095.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435.  https://doi.org/10.1016/j.toxicon.2006.11.022 CrossRefPubMedGoogle Scholar
  6. Bravo A, Gómez I, Porta H, García-Gómez BI, Rodriguez-Almazan C, Pardo L, Soberón M (2013) Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb Biotechnol 6:17–26.  https://doi.org/10.1111/j.1751-7915.2012.00342.x CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen Y, Yu P, Luo J, Jiang Y (2003) Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm Genome 14:859–865.  https://doi.org/10.1007/s00335-003-2296-6 CrossRefPubMedGoogle Scholar
  8. Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813PubMedPubMedCentralGoogle Scholar
  9. Crickmore N, Baum J, Bravo A et al (2017) Bacillus thuringiensis toxin nomenclature. http://www.btnomenclature.info/. Accessed 30 May 2018
  10. De Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199.  https://doi.org/10.1016/S0168-9525(01)02237-5 CrossRefPubMedGoogle Scholar
  11. Eddy S (1998) Profile hidden Markov models. Bioinformatics 14:755–763.  https://doi.org/10.1093/bioinformatics/14.9.755 CrossRefPubMedGoogle Scholar
  12. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152.  https://doi.org/10.1093/bioinformatics/bts565 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gong YN, Chen GW, Shih SR (2012) Characterization of subtypes of the influenza A hemagglutinin (HA) gene using profile hidden Markov models. J Microbiol Immunol Infect 45:404–410.  https://doi.org/10.1016/j.jmii.2011.12.018 CrossRefPubMedGoogle Scholar
  14. Hernández-Soto A, Del Rincón-Castro MC, Espinoza AM, Ibarra JE (2009) Parasporal body formation via overexpression of the Cry10Aa toxin of Bacillus thuringiensis subsp. israelensis, and Cry10Aa-Cyt1Aa synergism. Appl Environ Microbiol 75:4661–4667.  https://doi.org/10.1128/AEM.00409-09 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682.  https://doi.org/10.1093/bioinformatics/btq003 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ito T, Sahara K, Bando H, Asano S (2002) Cloning and expression of novel crystal protein genes cry39A and cry39ORF2 from Bacillus thuringiensis ssp. aizawai Bun1-14 encoding mosquitocidal proteins. J Insect Biotechnol Sericol 128:123–128.  https://doi.org/10.11416/JIBS2001.71.123 CrossRefGoogle Scholar
  17. Ito T, Ikeya T, Sahara K, Bando H, Asano SI (2006) Cloning and expression of two crystal protein genes, cry30Ba1 and cry44Aa1, obtained from a highly mosquitocidal strain, Bacillus thuringiensis subsp. entomocidus INA288. Appl Environ Microbiol 72:5673–5676.  https://doi.org/10.1128/AEM.01894-05 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jeong H, Park SH, Choi SK (2014) Genome sequence of the Acrystalliferous Bacillus thuringiensis serovar israelensis strain 4Q7, widely used as a recombination host. Genome Announc 2:e00231–e00214.  https://doi.org/10.1128/genomeA.00231-14 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jones GW, Nielsen-Leroux C, Yang Y, Yuan Z, Dumas VF, Gomes Monnerat R, Berry C (2007) A new Cry toxin with a unique two-component dependency from Bacillus sphaericus. FASEB J 21:4112–4120.  https://doi.org/10.1096/fj.07-8913com CrossRefPubMedGoogle Scholar
  20. Jouzani GS, Valijanian E, Sharafi R (2017) Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol 101:2691–2711.  https://doi.org/10.1007/s00253-017-8175-y CrossRefPubMedGoogle Scholar
  21. Juárez-Pérez V, Porcar M, Orduz S, Delécluse A (2003) Cry29A and Cry30A: Two Novel δ-endotoxins Isolated from Bacillus thuringiensis serovar medellin. Syst Appl Microbiol 26:502–504.  https://doi.org/10.1078/072320203770865783 CrossRefPubMedGoogle Scholar
  22. Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, Karpinets T, Lund O, Kora G, Wassenaar T, Poudel S, Ussery DW (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genom 15:141–161.  https://doi.org/10.1007/s10142-015-0433-4 CrossRefGoogle Scholar
  23. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM, Lund OJ (2012) Multilocus sequence typing of total genome sequenced bacteria. Clin Microbiol 50:1355–1361.  https://doi.org/10.1128/JCM.06094-11 CrossRefGoogle Scholar
  24. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucl Acids Res 44:W242–W245.  https://doi.org/10.1093/nar/gkw290 CrossRefPubMedGoogle Scholar
  25. Liu Q, Zhu Y, Wang B, Li Y (2003) A HMM-based method to predict the transmembrane regions of b-barrel membrane proteins. Comput Biol Chem 27:69–76.  https://doi.org/10.1016/S0097-8485(02)00051-7 CrossRefPubMedGoogle Scholar
  26. Liu Y, Lai Q, Göker M, Meier-Kolthoff JP, Wang M, Sun Y et al (2015) Genomic insights into the taxonomic status of the Bacillus cereus group. Sci Rep 5:14082.  https://doi.org/10.1038/srep14082 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Liu Y, Du J, Lai Q, Zeng R, Ye D, Xu J, Shao Z (2017) Proposal of nine novel species of the Bacillus cereus group. Int J Syst Evol Microbiol 67:2499–2508.  https://doi.org/10.1099/ijsem.0.001821 CrossRefPubMedGoogle Scholar
  28. Lopez-Meza JE, Ibarra JE (1996) Characterization of a novel strain of Bacillus thuringiensis. Appl Environ Microbiol 62:1306–1310PubMedPubMedCentralGoogle Scholar
  29. Melo ALDA, Soccol VT, Soccol CR (2016) Bacillus thuringiensis: Mechanism of action, resistance, and new applications: a review. Crit Rev Biotechnol 36:317–326.  https://doi.org/10.3109/07388551.2014.960793 CrossRefPubMedGoogle Scholar
  30. Méndez-López I, Basurto-Ríos R, Ibarra JE (2003) Bacillus thuringiensis serovar israelensis is highly toxic to the coffee berry borer, Hypothenemus hampei Ferr. (Coleoptera: Scolytidae). FEMS Microbiol Lett 226:73–77.  https://doi.org/10.1016/S0378-1097(03)00557-3 CrossRefPubMedGoogle Scholar
  31. Muñoz-Medina JE, Sánchez-Vallejo CJ, Méndez-Tenorio A et al (2015) In silico identification of highly conserved epitopes of influenza A H1N1, H2N2, H3N2, and H5N1 with diagnostic and vaccination potential. Biomed Res Int 2015:813047.  https://doi.org/10.1155/2015/813047 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Noguera PA, Ibarra JE (2010) Detection of new cry genes of Bacillus thuringiensis by use of a Novel PCR primer system. Appl Environ Microbiol 76:6150–6155.  https://doi.org/10.1128/AEM.00797-10 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ohgushi A, Saitoh H, Wasano N, Uemori A, Ohba M (2005) Cloning and characterization of two novel genes, cry24B and s1orf2, from a mosquitocidal strain of Bacillus thuringiensis serovar sotto. Curr Microbiol 51:131–136.  https://doi.org/10.1007/s00284-005-7529-3 CrossRefPubMedGoogle Scholar
  34. Palma L, Muñoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6:3296–3325.  https://doi.org/10.3390/toxins6123296 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Peng DH, Pang CY, Wu H, Huang Q, Zheng JS, Sun M (2015) The expression and crystallization of Cry65Aa require two C-termini, revealing a novel evolutionary strategy of Bacillus thuringiensis Cry proteins. Sci Rep 5:19–21.  https://doi.org/10.1038/srep08291 CrossRefGoogle Scholar
  36. Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329.  https://doi.org/10.1016/j.femsre.2004.12.005 CrossRefPubMedGoogle Scholar
  37. Reinoso-Pozo Y, Del Rincón-Castro MC, Ibarra JE (2016) Characterization of a highly toxic strain of Bacillus thuringiensis serovar kurstaki very similar to the HD-73 strain. FEMS Microbiol Lett 363:1–6.  https://doi.org/10.1093/femsle/fnw188 CrossRefGoogle Scholar
  38. Restrepo-Montoya D, Becerra D, Carvajal-Patiño J, Mongui A, Niño L, Patarroyo M, Patarroyo M (2011) Identification of plasmodium vivax proteins with potential role in invasion using sequence redundancy reduction and profile hidden Markov models. PLoS One 6:e25189.  https://doi.org/10.1371/journal.pone.0025189 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sauka DH, Benintende GB (2008) Bacillus thuringiensis: generalidades.Un acercamiento a su empleo en el biocontrol de insectoslepidópteros que son plagas agrícolas. Rev Argent Microbiol 40:124–140PubMedGoogle Scholar
  40. Sun Y, Zhao Q, Xia L, Ding X, Hu Q, Federici BA, Park HW (2013) Identification and characterization of three previously undescribed crystal proteins from Bacillus thuringiensis subsp. jegathesan. Appl Environ Microbiol 79:3364–3370.  https://doi.org/10.1128/AEM.00078-13 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tabashnik BE, Finson N, Johnson MW, Moar WJ (1993) Resistance to Toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal Cross-Resistance to B. thuringiensis subsp. aizawai in the Diamondback Moth (Lepidoptra: Plutellidae). Appl Environ Microbiol 59:1332–1335PubMedPubMedCentralGoogle Scholar
  42. Tamura K, Peterson D, Peterson N, Stecher G, Ne M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tonhosolo R, D’Alexandri FL, de Rosso VV et al (2009) Carotenoid biosynthesis in intraerythrocytic stages of Plasmodium falciparum. J Biol Chem 284:9974–9985.  https://doi.org/10.1074/jbc.M807464200 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Vilas-Boas GT, Peruca APS, Arantes OMN (2007) Biology and taxonomy of Bacillus cereus, Bacillus anthracis. and Bacillus thuringiensis. Can J Microbiol 53:673–687.  https://doi.org/10.1139/W07-029 CrossRefPubMedGoogle Scholar
  45. Weizhong L, Limin F, Beifang N, Sitao W, John W (2012) Ultrafast clustering algorithms for metagenomic sequence analysis. Brief Bioinform 13:656–668.  https://doi.org/10.1093/bib/bbs035 CrossRefGoogle Scholar
  46. Ye W, Zhu L, Liu Y, Crickmore N, Peng D, Ruan L, Sun M (2012) Mining new crystal protein genes from Bacillus thuringiensis based on mixed plasmid-enriched genome sequencing and a computational pipeline. Appl Environ Microbiol 78:4795–4801.  https://doi.org/10.1128/AEM.00340-12 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yokoyama T, Tanaka M, Hasegawa M (2004) Novel cry gene from Paenibacillus lentimorbus strain Semadara inhibits ingestion and promotes insecticidal activity in Anomala cuprea larvae. J Invertebr Pathol 85:25–32.  https://doi.org/10.1016/j.jip.2003.12.009 CrossRefPubMedGoogle Scholar
  48. Yoon BJ (2009) Hidden Markov models and their applications in biological sequence analysis. Curr Genom 10:402–415.  https://doi.org/10.2174/138920209789177575 CrossRefGoogle Scholar
  49. Zhang J, Hodgman TC, Krieger L, Schnetter W, Schairer HU (1997) Cloning and analysis of the first cry gene from Bacillus popilliae. J Bacteriol 179:4336–4341.  https://doi.org/10.1128/jb.179.13.4336-4341.1997 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Zhao M, Yuan X, Wei J, Zhang W, Wang B, Myint Khaing M, Liang G (2017) Functional roles of cadherin, aminopeptidase-N and alkaline phosphatase from Helicoverpa armigera (Hübner) in the action mechanism of Bacillus thuringiensis Cry2Aa. Sci Rep 7:1–9.  https://doi.org/10.1038/srep46555 CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Cinvestav-IrapuatoIrapuatoMexico

Personalised recommendations