Advertisement

3 Biotech

, 9:4 | Cite as

Role of medicinal plants in the management of diabetes mellitus: a review

  • Bindu Jacob
  • Narendhirakannan R.T.Email author
Review Article

Abstract

Medicinal plants have a vast potential in the treatment of various ailments due to the presence of therapeutically important phytochemicals. Diabetes is a serious metabolic disorder and several marketed medications are available to alleviate the symptoms of diabetes. However, these over the counter drugs are expensive and associated with several complications. Herbal medicines are gaining importance as they are cost-effective and also display improved therapeutic effects with lesser side effects. The present review includes the reports available on medicinal plants used for treating diabetes complications. The aim of the review is to categorize and summarize the available information on medicinal plants with anti-diabetic properties and suggesting outlooks for future research. A systematic search was performed on medicinal plants with anti-diabetic properties using several search engines such as Google Scholar, PubMed, Science Direct and other online journals and books. All the plants listed in this review are native to Asian countries and are routinely used by the traditional practitioners for the treatment of various ailments. Based on the literature data available, a total of 81 medicinal plants with anti-diabetic, anti-hyperglycemic, hypoglycemic, anti-lipidemic and insulin mimetic properties have been compiled in this review. This review provides useful information about the different medicinal plants for treating diabetes-associated complications. Further research can be carried out to study the active constituents and mechanism of these plants.

Keywords

Diabetes Medicinal plants Antidiabetic Antihyperglycemic Hypoglycemic 

Notes

Acknowledgements

The authors are thankful to the University Grants Commission of India for providing Maulana Azad National Fellowship financial support to carry out this work as a part of Ph.D. thesis. We also express our gratitude to Karunya Institute of Technology and Sciences for providing necessary facilities for the better compilation of this work. Funding was provided by Government of India via UGC’s Maulana Azad National Fellowship Scheme (F1-17.1/2015-16/MANF-2015-17-GUJ-69611).

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.

References

  1. Abas R, Othman F, Thent ZC (2014) Protective effect of Momordica charantia fruit extract on hyperglycaemia-induced cardiac fibrosis. Oxid Med Cell Longev.  https://doi.org/10.1155/2014/429060 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abdel-Hassan IA, Abdel-Barry JA, Tariq Mohammeda S (2000) The hypoglycaemic and antihyperglycaemic effect of Citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits. J Ethnopharmacol 71:1–2.  https://doi.org/10.1016/S0378-8741(99)00215-9 325–330.CrossRefGoogle Scholar
  3. Abdulrazaq NB, Cho MM, Win NN, Zaman R, Rahman MT (2012) Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. Br J Nutr 108:1194–1201.  https://doi.org/10.1017/S0007114511006635 CrossRefPubMedGoogle Scholar
  4. Abeywickrama KRW, Ratnasooriya WD, Amarakoon AM (2011) Oral hypoglycaemic, antihyperglycaemic and antidiabetic activities of Sri Lankan Broken Orange Pekoe Fannings (BOPF) grade black tea (Camellia sinensis L.) in rats. J Ethnopharmacol 135:2:278–286.  https://doi.org/10.1016/j.jep.2011.02.035 CrossRefGoogle Scholar
  5. Ahlem S, Khaled H, Wafa M, Sofiane B, Mohamed D, Jean-Claude M, Abdelfattah el F (2009) Oral administration of Eucalyptus globulus extract reduces the alloxan-induced oxidative stress in rats. Chem Biol Interact 181(1):71–76.  https://doi.org/10.1016/j.cbi.2009.06.006 CrossRefPubMedGoogle Scholar
  6. Ahmad M, Kamran SH, Mobasher A (2014) Protective effect of crude Curcuma longa and its methanolic extract in alloxanized rabbits. Pak J Pharm Sci 27:1121–1128Google Scholar
  7. Ahmed I, Adeghate E, Cummings E, Sharma AK, Singh J (2004) Beneficial effects and mechanism of action of Momordica charantia juice in the treatment of streptozotocin-induced diabetes mellitus in rat. Mol Cell Biochem 261:63–70.  https://doi.org/10.1023/B:MCBI.0000028738.95518.90 CrossRefPubMedGoogle Scholar
  8. Aissaoui A, Zizi S, Israili ZH, Lyoussi B (2011) Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones shawi rats. J Ethnopharmacol 137:652–661.  https://doi.org/10.1016/j.jep.2011.06.019 CrossRefPubMedGoogle Scholar
  9. Akhtar MS, Ramzan A, Ali A, Ahmad M (2011) Effect of Amla fruit (Emblica officinalis Gaertn.) on blood glucose and lipid profile of normal subjects and type 2 diabetic patients. Int J Food Sci Nutr 62(6):609–616.  https://doi.org/10.3109/09637486.2011.560565 CrossRefPubMedGoogle Scholar
  10. Al-amin ZM, Thomson M, Al-qattan KK, Peltonen-shalaby R, Ali M (2006) Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. Br J Nutr 96(4):660–666.  https://doi.org/10.1079/BJN20061849 CrossRefPubMedGoogle Scholar
  11. Al-Goblan AS, Al-Alfi MA, Khan MZ (2014) Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes 7:587–591.  https://doi.org/10.2147/DMSO.S67400 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Al-Shaqha WM, Khan M, Salam N, Azzi A, Chaudhary AA (2015) Anti-diabetic potential of Catharanthus roseus Linn. and its effect on the glucose transport gene (GLUT-2 and GLUT-4) in streptozotocin induced diabetic wistar rats. BMC Complement Altern Med 15(1):379.  https://doi.org/10.1186/s12906-015-0899-6 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ananda PK, Kumarappan CT, Christudas S, Kalaichelvan VK (2012) Effect of Biophytum sensitivum on streptozotocin and nicotinamide-induced diabetic rats. Asian Pac J Trop Biomed 2:1:31–35.  https://doi.org/10.1016/S2221-1691(11)60185-8 CrossRefGoogle Scholar
  14. Andrade-Cetto A, Wiedenfeld H (2011) Anti-hyperglycemic effect of Opuntia streptacantha Lem. J Ethnopharmacol 133:2, 940–943.  https://doi.org/10.1016/j.jep.2010.11.022 CrossRefPubMedGoogle Scholar
  15. Ankolekar C, Terry T, Johnson K, Johnson D, Barbosa AC, Shetty K (2011) Anti-hyperglycemia properties of Tea (Camellia sinensis) bioactives using in vitro assay models and influence of extraction time. J Med Food 14(10):1190–1197.  https://doi.org/10.1089/jmf.2010.0291 CrossRefPubMedGoogle Scholar
  16. Ansari A, Shahriar MSZ, Hassan MM, Das SR, Rokeya B, Haque MA, Biswas N, Sarkar T (2014) Emblica officinalis improves glycemic status and oxidative stress in STZ induced type 2 diabetic model rats. Asian Pac J Trop Med 7(1):21–25.  https://doi.org/10.1016/S1995-7645(13)60185-6 CrossRefPubMedGoogle Scholar
  17. Arul B, Kothai R, Christina AJ (2004) Hypoglycemic and antihyperglycemic effect of Semecarpus anacardium Linn in normal and streptozotocin-induced diabetic rats. Methods Find Exp Clin Pharmacol 26:10:759–762.  https://doi.org/10.1358/mf.2004.26.10.872556 CrossRefGoogle Scholar
  18. Arumugam S, Kavimani S, Kadalmani B, Ahmed ABA, Akbarsha MA, Rao MV (2008) Antidiabetic activity of leaf and callus extracts of Aegle marmelos in rabbit. Sci Asia 34:317–321.  https://doi.org/10.2306/scienceasia1513-1874.2008.34.317 CrossRefGoogle Scholar
  19. Ashraf R, Khan RA, Ashraf I (2011) Garlic (Allium sativum) supplementation with standard antidiabetic agent provides better diabetic control in type 2 diabetes patients. Pak J Pharm Sci. 24(4):565–570PubMedGoogle Scholar
  20. Atal S, Agrawal RP, Vyas S, Phadnis P, Rai N (2012) Evaluation of the effect of piperine per se on blood glucose level in alloxan-induced diabetic mice. Acta Pol Pharm 69(5):965–969PubMedGoogle Scholar
  21. Ayyanar M, Sankarasivaraman K, Ignacimuthu S (2008) Traditional herbal medicines used for the treatment of diabetes among two major tribal groups in South Tamil Nadu, India. Ethnobot Leaf 12:276–280Google Scholar
  22. Baizid Alam Shibib MAA, Hasan AM, Rahman R (2012) A creeper, Coccinia indica, has anti-hyperglycaemic and anti-ureogenic effects in diabetic rats. JPMA 62:1145Google Scholar
  23. Balamurugan R, Duraipandiyan V, Ignacimuthu S (2011) Antidiabetic activity of γ-sitosterol isolated from Lippia nodiflora L. in streptozotocin induced diabetic rats. Eur J Pharmacol 667(1–3):410–418.  https://doi.org/10.1016/j.ejphar.2011.05.025.CrossRefPubMedGoogle Scholar
  24. Baldissera G, Sperotto NDM, Rosa HT, Henn JG, Peres VF, Moura DJ, Roehrs R, Denardin ELG, Dal Lago P, Nunes RB, Saffi J (2016) Effects of crude hydroalcoholic extract of Syzygium cumini (L.) Skeels leaves and continuous aerobic training in rats with diabetes induced by a high-fat diet and low doses of streptozotocin. J Ethnopharmacol 194:1012–1021.  https://doi.org/10.1016/j.jep.2016.10.056 CrossRefPubMedGoogle Scholar
  25. Baliga MS, Bhat HP, Joseph N, Fazal F (2011) Phytochemistry and medicinal uses of the bael fruit (Aegle marmelos Correa): a concise review. Food Res Int 44:7:1768–1775.  https://doi.org/10.1016/j.foodres.2011.02.008 CrossRefGoogle Scholar
  26. Banerjee J, Narendhirakannan RT (2011) Biosynthesis of silver nanoparticles from Syzygium cumini (L.) seed extract and evaluation of their in vitro antioxidant activities. Dig J Nanomater Biostruct 6:961–968Google Scholar
  27. Barghamdi B, Ghorat F, Asadollahi K, Sayehmiri K, Peyghambari R, Abangah G (2016) Therapeutic effects of Citrullus colocynthis fruit in patients with type II diabetes: a clinical trial study. J Pharm Bioallied Sci 8(2):130–134.  https://doi.org/10.4103/0975-7406.171702 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Bastaki S (2005) Diabetes mellitus and its treatment. Int J Diabetes Metab 13:111–134Google Scholar
  29. Bavarva JH, Narasimhacharya AV (2008) Antihyperglycemic and hypolipidemic effects of Costus speciosus in alloxan induced diabetic rats. Phytother Res 22(5):620–626.  https://doi.org/10.1002/ptr.2302 CrossRefPubMedGoogle Scholar
  30. Beidokhti MN, Andersen MV, Eid HM, Villavicencio MLS, Staerk D, Haddad PS, Jäger AK (2017) Investigation of antidiabetic potential of Phyllanthus niruri L. using assays for α-glucosidase, muscle glucose transport, liver glucose production, and adipogenesis. Biochem Biophys Res Commun 493(1):869–874.  https://doi.org/10.1016/j.bbrc.2017.09.080 CrossRefGoogle Scholar
  31. Bhandari U, Ansari MN (2008) Antihyperglycaemic activity of aqueous extract of Embelia ribes Burm in streptozotocin-induced diabetic rats. Indian J Exp Biol 46:8:607–613. http://nopr.niscair.res.in/handle/123456789/4570
  32. Bitencourt PER, Bona KS, De Cargnelutti LO, Bonfanti G, Pigatto A, Boligon A, Athayde ML, Pierezan F, Zanette RA, Moretto MB (2015) Syzygium cumini seed extract ameliorates adenosine deaminase activity and biochemical parameters but does not alter insulin sensitivity and pancreas architecture in a short-term model of diabetes. J Complement Integr Med 12:187–193.  https://doi.org/10.1515/jcim-2015-0008 CrossRefPubMedGoogle Scholar
  33. Bnouham M, Merhfour FZ, Ziyyat A, Mekhfi H, Aziz M, Legssyer A (2003) Antihyperglycemic activity of the aqueous extract of Urtica dioica. Fitoterapia 74(7):677–681.  https://doi.org/10.1016/S0367-326X(03)00182-5 CrossRefPubMedGoogle Scholar
  34. Bolkent Ş, Yanardağ R, Tabakoğlu-Oğuz A, Özsoy-Saçan Ö (2000) Effects of chard (Beta vulgaris L. var. cicla) extract on pancreatic B cells in streptozotocin-diabetic rats: a morphological and biochemical study. J Ethnopharmacol 73(1):251–259.  https://doi.org/10.1016/S0378-8741(00)00328-7 CrossRefPubMedGoogle Scholar
  35. Broadhurst CL, Polansky MM, Anderson RA (2000) Insulin like biological activity of culinary and medicinal plant aqueous extracts in vitro. J Agric Food Chem 48(3):849–852.  https://doi.org/10.1021/jf9904517 CrossRefPubMedGoogle Scholar
  36. Chahlia N (2009) Evaluation of Hypolipidaemic Activity of Capparis decidua. Int J Biomed Sci 5(1):70–73PubMedPubMedCentralGoogle Scholar
  37. Chakrabarti R, Vikramadithyan RK, Mullangi R, Sharma VM, Jagadheshan H, Rao YN, Sairam P, Rajagopalan R (2002) Antidiabetic and hypolipidemic activity of Helicteres isora in animal models. J Ethnopharmacol 81(3):343–349.  https://doi.org/10.1016/S0378-8741(02)00120-4 CrossRefPubMedGoogle Scholar
  38. Chakrabarti S, Biswas TK, Seal T, Rokeya B, Ali L, Khan AA, Nahar N, Mosihuzzaman M, Mukherjee B (2005) Antidiabetic activity of Caesalpinia bonducella F. in chronic type 2 diabetic model in Long-Evans rats and evaluation of insulin secretagogue property of its fractions on isolated islets. J Ethnopharmacopol 97(1):117–122.  https://doi.org/10.1016/j.jep.2004.10.025 CrossRefGoogle Scholar
  39. Chauhan S, Nath N, Tule V (2008) Antidiabetic and antioxidant effects of Picrorhiza kurrooa rhizome extracts in diabetic rats. Indian J Clin Biochem 23(3):238–242.  https://doi.org/10.1007/s12291-008-0053-z CrossRefPubMedPubMedCentralGoogle Scholar
  40. Chhetri DR, Parajuli P, Subba GC (2005) Antidiabetic plants used by Sikkim and Darjeeling Himalayan tribes, India. J Ethnopharmacol 99(2):199–202.  https://doi.org/10.1016/j.jep.2005.01.058 CrossRefPubMedGoogle Scholar
  41. Crawford P (2009) Effectiveness of cinnamon for lowering hemoglobin A1C in patients with type 2 diabetes: a randomized, controlled trial. J Am Board Fam Med 22:507–512.  https://doi.org/10.3122/jabfm.2009.05.080093 CrossRefPubMedGoogle Scholar
  42. D’souza JJ. D’souza PP, Fazal F, Kumar A, Bhat HP, Baliga MS (2014) Anti-diabetic effects of the Indian indigenous fruit Emblica officinalis Gaertn: active constituents and modes of action. Food Funct 5:635.  https://doi.org/10.1039/c3fo60366k CrossRefPubMedGoogle Scholar
  43. Das S, Barman S (2012) Antidiabetic and antihyperlipidemic effects of ethanolic extract of leaves of Punica granatum in alloxan-induced non-insulin-dependent diabetes mellitus albino rats. Indian J Pharmacol 44(2):219–224.  https://doi.org/10.4103/0253-7613.93853 CrossRefPubMedPubMedCentralGoogle Scholar
  44. de Medina FS, Gamez MJ, Jimenez I, Jimenez J, Osuna JI, Zarzuelo A (1994) Hypoglycemic activity of juniper “berries”. Planta Med 60(03):197–200.  https://doi.org/10.1055/s-2006-959457 CrossRefGoogle Scholar
  45. de Souza Cardoso J, Oliveira PS, Bona NP, Vasconcellos FA, Baldissarelli J, Vizzotto M, Soares MSP, Ramos VP, Spanevello RM, Lencina CL, Tavares RG (2017) Antioxidant, antihyperglycemic, and antidyslipidemic effects of Brazilian-native fruit extracts in an animal model of insulin resistance. Redox Rep.  https://doi.org/10.1080/13510002.2017.1375709 CrossRefPubMedGoogle Scholar
  46. Dean L, McEntyre J (2004) The genetic landscape of diabetes [Internet]. National Center for Biotechnology Information (US), BethesdaGoogle Scholar
  47. Debbarma M, Pala NA, Kumar M, Bussmann RW (2017) Traditional knowledge of medicinal plants in tribes of Tripura in northeast, India. Afr J Tradit Complement Altern Med 14(4):156.  https://doi.org/10.21010/ajtcam.v14i4.18 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Deguchi Y, Miyazaki K (2010) Anti-hyperglycemic and anti-hyperlipidemic effects of guava leaf extract. Nutr Metab (Lond) 7(1):9.  https://doi.org/10.1186/1743-7075-7-9 CrossRefGoogle Scholar
  49. Dhanabal SP, Kokate CK, Ramanathan M, Kumar EP, Suresh B (2006) Hypoglycaemic activity of Pterocarpus marsupium Roxb. Phytother Res 20(1):4–8.  https://doi.org/10.1002/ptr.1819 CrossRefPubMedGoogle Scholar
  50. Dikshit P, Shukla K, Tyagi MK, Garg P, Gambhir JK, Shukla R (2012) Antidiabetic and antihyperlipidemic effects of the stem of Musa sapientum Linn. in streptozotocin-induced diabetic rats. J Diabetes 4(4):378–385.  https://doi.org/10.1111/j.1753-0407.2012.00198 CrossRefPubMedGoogle Scholar
  51. Durg S, Veerapur VP, Neelima S, Dhadde SB (2017) Antidiabetic activity of Embelia ribes, embelin and its derivatives: a systematic review and meta-analysis. Biomed Pharmacother 86:195–204.  https://doi.org/10.1016/j.biopha.2016.12.001 CrossRefPubMedGoogle Scholar
  52. Dusane MB, Joshi BN (2012) Islet protective and insulin secretion property of Murraya koenigii and Ocimum tenuflorum in streptozotocin-induced diabetic mice. Can J Physiol Pharmacol 90:371–378.  https://doi.org/10.1139/y11-133 CrossRefPubMedGoogle Scholar
  53. Eidi A, Eidi M, Esmaeili E (2006) Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 13(9–10):624–629.  https://doi.org/10.1016/j.phymed.2005.09.010 CrossRefPubMedGoogle Scholar
  54. Eidi M, Eidi A, Saeidi A, Molanaei S, Sadeghipour A, Bahar M, Bahar K (2009) Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin-induced diabetic rats. Phytother Res 23(3):404–406.  https://doi.org/10.1002/ptr.2642 CrossRefPubMedGoogle Scholar
  55. Eldin IM, Ahmed EM, Abd EH (2010) Preliminary study of the clinical hypoglycemic effects of Allium cepa (red onion) in type 1 and type 2 diabetic patients. Environ Health Insights 4:71.  https://doi.org/10.4137/EHI.S5540 CrossRefGoogle Scholar
  56. Eliza J, Daisy P, Ignacimuthu S, Duraipandiyan V (2009) Antidiabetic and antilipidemic effect of eremanthin from Costus speciosus (Koen.)Sm., in STZ-induced diabetic rats. Chem Biol Interact 182(1):67–72.  https://doi.org/10.1016/j.cbi.2009.08.012 CrossRefPubMedGoogle Scholar
  57. Eno AE, Ofem OE, Nku CO, Ani EJ, Itam EH (2008) Stimulation of insulin secretion by Viscum album (mistletoe) leaf extract in streptozotocin-induced diabetic rats. Afr J Med Med Sci 37(2):141–147PubMedGoogle Scholar
  58. Fabio GD, Romanucci V, De Marco A, Zarrelli A (2014) Triterpenoids from Gymnema sylvestre and their pharmacological activities. Molecules 19(8):10956–10981.  https://doi.org/10.3390/molecules190810956 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Gandhi GR, Ignacimuthu S, Paulraj MG (2012) Hypoglycemic and β-cells regenerative effects of Aegle marmelos (L.) Corr. bark extract in streptozotocin-induced diabetic rats. Food Chem Toxicol 50:1667–1674.  https://doi.org/10.1016/j.fct.2012.01.030 CrossRefPubMedGoogle Scholar
  60. Ganogpichayagrai A, Palanuvej C, Ruangrungsi N (2017) Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves. J Adv Pharm Technol Res 8(1):19–24.  https://doi.org/10.4103/2231-4040.197371 CrossRefPubMedPubMedCentralGoogle Scholar
  61. George C, Lochner A, Huisamen B (2011) The efficacy of Prosopis glandulosa as antidiabetic treatment in rat models of diabetes and insulin resistance. J Ethnopharmacol 137(1):298–304.  https://doi.org/10.1016/j.jep.2011.05.023 CrossRefPubMedGoogle Scholar
  62. Ghoul JE, Boughattas NA, Ben-Attia M (2013) Antihyperglycemic and antihyperlipidemic activities of ethanolic extract of Zygophyllum album in streptozotocin-induced diabetic mice. Toxicol Ind Health 29(1):43–51.  https://doi.org/10.1177/0748233712442706 CrossRefPubMedGoogle Scholar
  63. Gondi M, Basha SA, Bhaskar JJ, Salimath PV, Rao UJ (2015) Anti-diabetic effect of dietary mango (Mangifera indica L.) peel in streptozotocin-induced diabetic rats. J Sci Food Agric 95(5):991–999.  https://doi.org/10.1002/jsfa.6778 CrossRefPubMedGoogle Scholar
  64. Gordien AY, Gray AI, Franzblau SG, Seidel V (2009) Antimycobacterial terpenoids from Juniperus communis L.(Cuppressaceae). J Ethnopharmacol 126(3):500–505CrossRefGoogle Scholar
  65. Guang-Kai XU, Xiao-Ying QI, Guo-Kai WA, Guo-Yong XI, Xu-Sen LI, Chen-Yu SU, Bao-Lin LI, Min-Jian QI (2017) Antihyperglycemic, antihyperlipidemic and antioxidant effects of standard ethanol extract of Bombax ceiba leaves in high-fat-diet-and streptozotocin-induced type 2 diabetic rats. Chin J Nat Med 15(3):168–177.  https://doi.org/10.1016/S1875-5364(17)30033-X CrossRefGoogle Scholar
  66. Gupta RK, Kesari AN, Murthy PS, Chandra R, Tandon V, Watal G (2005) Hypoglycemic and antidiabetic effect of ethanolic extract of leaves of Annona squamosa L. in experimental animals. J Ethnopharmacol 99(1):75–81.  https://doi.org/10.1016/j.jep.2005.01.048 CrossRefPubMedGoogle Scholar
  67. Gupta S, Mediratta PK, Singh S, Sharma KK, Shukla R (2006) Antidiabetic, antihypercholesterolaemic and antioxidant effect of Ocimum sanctum (Linn) seed oil. Indian J Exp Biol 44(4):300–304PubMedGoogle Scholar
  68. Gupta RK, Kesari AN, Diwakar S, Tyagi A, Tandon V, Chandra R, Wata G (2008) In vivo evaluation of anti-oxidant and anti-lipidemic potential of Annona squamosa aqueous extract in type 2 diabetic models. J Ethnopharmacol 118(1):21–25.  https://doi.org/10.1016/j.jep.2008.03.008 CrossRefPubMedGoogle Scholar
  69. Gupta S, Sharma SB, Bansal SK, Prabhu KM (2009) Antihyperglycemic and hypolipidemic activity of aqueous extract of Cassia auriculata L. leaves in experimental diabetes. J Ethnopharmacol 123(3):499–503.  https://doi.org/10.1016/j.jep.2009.02.019 CrossRefPubMedGoogle Scholar
  70. Gurukar MSA, Mahadevamma S, Chilkunda ND (2013) Renoprotective effect of Coccinia indica fruits and leaves in experimentally induced diabetic rats. J Med Food 16:9:839–846.  https://doi.org/10.1089/jmf.2012.2689 CrossRefGoogle Scholar
  71. Haniadka R, Saldanha E, Sunita V, Palatty PL, Fayad R, Baliga MS (2013) A review of the gastroprotective effects of ginger (Zingiber officinale Roscoe). Food Funct 4(6):845–855.  https://doi.org/10.1039/C3FO30337C CrossRefPubMedGoogle Scholar
  72. Hannan JM, Marenah L, Ali L, Rokeya B, Flatt PR, Abdel-Wahab YH (2006) Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic beta-cells. J Endocrinol 189(1):127–136.  https://doi.org/10.1677/joe.1.06615 CrossRefPubMedGoogle Scholar
  73. Hegazy GA, Alnoury AM, Gad HG (2013) The role of Acacia arabica extract as an antidiabetic, antihyperlipidemic, and antioxidant in streptozotocin-induced diabetic rats. Saudi Med J 34(7):727–733PubMedGoogle Scholar
  74. Hou SZ, Chen SX, Huang S, Jiang DX, Zhou CJ, Chen CQ, Liang YM, Lai XP (2011) The hypoglycemic activity of Lithocarpus polystachyus Rehd. leaves in the experimental hyperglycemic rats. J Ethnopharmacol 138(1):142–149.  https://doi.org/10.1016/j.jep.2011.08.067 CrossRefPubMedGoogle Scholar
  75. Huang CS, Yin MC, Chiu LC (2011) Antihyperglycemic and antioxidative potential of Psidium guajava fruit in streptozotocin-induced diabetic rats. Food Chem Toxicol 49(9):2189–2195.  https://doi.org/10.1016/j.fct.2011.05.032 CrossRefPubMedGoogle Scholar
  76. Husain I, Chander R, Saxena JK, Mahdi AA, Mahdi F (2015) Antidyslipidemic effect of Ocimum sanctum leaf extract in streptozotocin induced diabetic rats. Indian J Clin Biochem 30:72–77.  https://doi.org/10.1007/s12291-013-0404-2 CrossRefPubMedGoogle Scholar
  77. Huseini HF, Kianbakht S, Hajiaghaee R, Dabaghian FH (2012) Anti-hyperglycemic and anti-hypercholesterolemic effects of Aloe vera leaf gel in hyperlipidemic type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Planta Med 78(04):311–316.  https://doi.org/10.1055/s-0031-1280474 CrossRefPubMedGoogle Scholar
  78. Hussain EHMA, Jamil K, Rao M (2001) Hypoglycaemic, hypolipidemic and antioxidant properties of tulsi (Ocimum sanctum Linn) on streptozotocin induced diabetes in rats. Indian J Clin Biochem 16:190–194.  https://doi.org/10.1007/BF02864859 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Hussain AI, Rathore HA, Sattar MZ, Chatha SA, Sarker SD, Gilani AH (2014) Citrullus colocynthis (L.) Schrad (bitter apple fruit): a review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J Ethnopharmacol 155(1):54–66CrossRefGoogle Scholar
  80. Ikechukwu JO, Ifeanyi SO (2016) The antidiabetic effects of the bioactive flavonoid (kaempferol-3-O-β-D-6 {P-Coumaroyl} glucopyranoside) isolated from Allium cepa. Recent Pat Antiinfect Drug Discov 11(1):44–52CrossRefGoogle Scholar
  81. Ilkhanizadeh B, Shirpoor A, Ansari M, Nemati K, Rasmi S Y (2016) Protective effects of ginger (Zingiber officinale) extract against diabetes-induced heart abnormality in rats. Diabetes Metab J 40:46–53.  https://doi.org/10.4093/dmj.2016.40.1.46 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Iranloye BO, Arikawe AP, Rotimi G, Sogbade AO (2008) Anti-diabetic and anti-oxidant effects of Zingiber officinale on alloxan-induced and insulin-resistant diabetic male rats. Niger J Physiol Sci 26(1):89–96Google Scholar
  83. Islam MS, Choi H (2008) Dietary red chilli (Capsicum frutescens L.) is insulinotropic rather than hypoglycemic in type 2 diabetes model of rats. Phytother Res 22(8):1025–1029.  https://doi.org/10.1002/ptr.2417 CrossRefPubMedGoogle Scholar
  84. Jaber H, Baydoun E, EL-Zein O, Kreydiyyeh SI (2013) Anti-hyperglycemic effect of the aqueous extract of banana infructescence stalks in streptozotocin-induced diabetic rats. Plant Foods Hum Nutr 68(1):83–89.  https://doi.org/10.1007/s11130-013-0341-5 CrossRefPubMedGoogle Scholar
  85. Jaiswal D, Rai PK, Kumar A, Watal G (2008) Study of glycemic profile of Cajanus cajan leaves in experimental rats. Indian J Clin Biochem 23(2):167–170.  https://doi.org/10.1007/s12291-008-0037-z CrossRefPubMedPubMedCentralGoogle Scholar
  86. Jeyaprakash K, Ayyanar M, Geetha KN, Sekar T (2011) Traditional uses of medicinal plants among the tribal people in Theni District (Western Ghats), Southern India. Asian Pac J Trop Biomed 1:S20–S25.  https://doi.org/10.1016/S2221-1691(11)60115-9 CrossRefGoogle Scholar
  87. Jiao Y, Wang X, Jiang X, Kong F, Wang S, Yan C (2017) Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. J Ethnopharmacol 199:119–127.  https://doi.org/10.1016/j.jep.2017.02.003 CrossRefPubMedGoogle Scholar
  88. Kabir AU, Samad MB, Ahmed A, Jahan MR, Akhter F, Tasnim J, Hasan SN, Sayfe SS, Hannan JM (2015) Aqueous fraction of Beta vulgaris ameliorates hyperglycemia in diabetic mice due to enhanced glucose stimulated insulin secretion, mediated by acetylcholine and GLP-1, and elevated glucose uptake via increased membrane bound GLUT4 transporters. PloS One 10(2):e0116546.  https://doi.org/10.1371/journal.pone.0116546 CrossRefPubMedCentralGoogle Scholar
  89. Kamalakkannan N, Prince PSM (2003) Hypoglycaemic effect of water extracts of Aegle marmelos fruits in streptozotocin diabetic rats. J Ethnopharmacol 87(2–3):207–210.  https://doi.org/10.1016/S0378-8741(03)00148-X CrossRefPubMedGoogle Scholar
  90. Kamalakkannan N, Prince PSM (2005) The effect of Aegle marmelos fruit extract in streptozotocin diabetes: a histopathological study. J Herb Pharmacother 5(3):87–96.  https://doi.org/10.1080/J157v05n03_08 CrossRefPubMedGoogle Scholar
  91. Kamble SM, Kamlakar PL, Vaidya S, Bambole VD (1998) Influence of Coccinia indica on certain enzymes in glycolytic and lipolytic pathway in human diabetes. Indian J Med Sci 52:143–146PubMedGoogle Scholar
  92. Kanetkar PV, Laddha KS, Kamat MY (2004) Gymnemic acids: a molecular perspective of its action on carbohydrate metabolism. Proceedings of the 16th ICFOST meet organized by CFTRI and DFRL, Mysore, IndiaGoogle Scholar
  93. Kanetkar P, Singhal R, Kamat M (2007) Gymnema sylvestre: a memoir. J Clin Biochem Nutr 41(2):77–81CrossRefGoogle Scholar
  94. Kesari NA, Gupta KR, Singh KS, Diwakarr S, Watal G (2006) Hypoglycemic and antihyperglycemic activity of Aegle marmelos seed extract in normal and diabetic rats. J Ethnopharmacol 107:374–379.  https://doi.org/10.1016/j.jep.2006.03.042 CrossRefPubMedGoogle Scholar
  95. Kesari AN, Kesari S, Singh SK, Gupta RK, Watal G (2007) Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals. J Ethnopharmacol 112:305–311.  https://doi.org/10.1016/j.jep.2007.03.023 CrossRefPubMedGoogle Scholar
  96. Khan HB, Vinayagam KS, Moorthy BT, Palanivelu S, Panchanatham S (2013) Anti-inflammatory and anti-hyperlipidemic effect of Semecarpus anacardium in a high fat diet: STZ-induced type 2 diabetic rat model. Inflammopharmacol 21(1):37–46.  https://doi.org/10.1007/s10787-011-0109-1 CrossRefGoogle Scholar
  97. Khosla P, Bhanwra S, Singh J, Seth S, Srivastava RK (2000) A study of hypoglycaemic effects of Azadirachta indica (Neem) in normal and alloxan diabetic rabbits. Indian J Physiol Pharmacol 44(1):69–74PubMedGoogle Scholar
  98. Kim K, Kim H, Kwon J, Lee S, Kong H, Im SA, Lee YH, Lee YR, Oh ST, Jo TH, Park YI (2009) Hypoglycemic and hypolipidemic effects of processed Aloe vera gel in a mouse model of non-insulin-dependent diabetes mellitus. Phytomedicine 16(9):856–863.  https://doi.org/10.1016/j.phymed.2009.02.014 CrossRefPubMedGoogle Scholar
  99. Kondhare D, Lade H (2017) Phytochemical profile, aldose reductase inhibitory, and antioxidant activities of Indian traditional medicinal Coccinia grandis (L.) fruit extract. 3 Biotech 7(6):378CrossRefGoogle Scholar
  100. Kooti W, Farokhipour M, Asadzadeh Z, Ashtary-Larky D, Asadi-Samani M (2016) The role of medicinal plants in the treatment of diabetes: a systematic review. Electron Physician 8(1):1832–1842.  https://doi.org/10.19082/1832 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Kumagai Y, Nakatani S, Onodera H, Nagatomo A, Nishida N, Matsuura Y, Kobata K, Wada M (2015) Anti-glycation effects of pomegranate (Punica granatum L.) fruit extract and its components in vivo and in vitro. J Agric Food Chem 63(35):7760–7764.  https://doi.org/10.1021/acs.jafc.5b02766 CrossRefPubMedGoogle Scholar
  102. Kumar S, Kumar V, Prakash O (2011) Antidiabetic, hypolipidemic and histopathological analysis of Dillenia indica (L.) leaves extract on alloxan induced diabetic rats. Asian Pac J Trop Med 4(5):347–352.  https://doi.org/10.1016/S1995-7645(11)60101-6 CrossRefPubMedGoogle Scholar
  103. Kumar P, Kale RK, Baquer NZ (2012) Antihyperglycemic and protective effects of Trigonella foenum graecum seed powder on biochemical alterations in alloxan diabetic rats. Eur Rev Med Pharmacol Sci 16:18–27PubMedGoogle Scholar
  104. Kumar V, Mahdi F, Khanna AK, Singh R, Chander R, Saxena JK, Mahdi AA, Singh RK (2013) Antidyslipidemic and antioxidant activities of Hibiscus rosa sinensis root extract in alloxan induced diabetic rats. Indian J Clin Biochem 28(1):46–50.  https://doi.org/10.1007/s12291-012-0223-x CrossRefPubMedGoogle Scholar
  105. Kurup SB. Mini S (2017) Averrhoa bilimbi fruits attenuate hyperglycemia-mediated oxidative stress in streptozotocin-induced diabetic rats. J Food Drug Anal 25(2):360–368.  https://doi.org/10.1016/j.jfda.2016.06.007 CrossRefPubMedGoogle Scholar
  106. Laribi B. Kouki K, M’Hamdi M, Bettaieb T (2015) Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia 103:9–26.  https://doi.org/10.1016/j.fitote.2015.03.012 CrossRefPubMedGoogle Scholar
  107. Li HB, Wong CC, Cheng KW, Chen F (2008) Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT Food Sci Technol 41(3):385–390.  https://doi.org/10.1016/j.lwt.2007.03.011 CrossRefGoogle Scholar
  108. Li S, Li J, Guan XL, Li J, Deng SP, Li LQ, Tang MT, Huang JG, Chen ZZ, Yang RY (2011) Hypoglycemic effects and constituents of the barks of Cyclocarya paliurus and their inhibiting activities to glucosidase and glycogen phosphorylase. Fitoterapia 82(7):1081–1085.  https://doi.org/10.1016/j.fitote.2011.07.002 CrossRefPubMedGoogle Scholar
  109. Li PB, Lin WL, Wang YG, Peng W, Cai XY, Su WW (2012a) Antidiabetic activities of oligosaccharides of Ophiopogonis japonicus in experimental type 2 diabetic rats. Int J Biol Macromol 51(5):749–755.  https://doi.org/10.1016/j.ijbiomac.2012.07.007 CrossRefPubMedGoogle Scholar
  110. Li Y, Tran VH, Duke CC, Roufogalis BD (2012b) Gingerols of Zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes. Planta Medica 78(14):1549–1555.  https://doi.org/10.1055/s-0032-1315041 CrossRefPubMedGoogle Scholar
  111. Li R, Liang T, Xu L, Li Y, Zhang S, Duan X (2013) Protective effect of cinnamon polyphenols against STZ-diabetic mice fed high-sugar, high-fat diet and its underlying mechanism. Food Chem Toxicol 51:419–425.  https://doi.org/10.1016/j.fct.2012.10.024 CrossRefPubMedGoogle Scholar
  112. Liu S, Li D, Huang B, Chen Y, Lu X, Wang Y (2013) Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. J Ethnopharmacol 149(1):263–269.  https://doi.org/10.1016/j.jep.2013.06.034 CrossRefPubMedGoogle Scholar
  113. Mahluji S, Attari VE, Mobasseri M, Payahoo L, Ostadrahimi A, Golzari SE (2013) Effects of ginger (Zingiber officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. Int J Food Sci Nutr 64:963–7486.  https://doi.org/10.3109/09637486.2013.775223 CrossRefGoogle Scholar
  114. Majekodunmi SO, Oyagbemi AA, Umukoro S, Odeku OA (2011) Evaluation of the anti-diabetic properties of Mucuna pruriens seed extract. Asian Pac J Trop Med 4(8):632–636.  https://doi.org/10.1016/S1995-7645(11)60161-2 CrossRefPubMedGoogle Scholar
  115. Mang B, Wolters M, Schmitt B, Kelb K, Lichtinghagen R, Stichtenoth DO, Hahn A (2006) Effects of a cinnamon extract on plasma glucose, HbA1c, and serum lipids in diabetes mellitus type 2. Eur J Clin Investig 36(5):340–344.  https://doi.org/10.1111/j.1365-2362.2006.01629.x CrossRefGoogle Scholar
  116. Mani SS, Subramanian IP, Pillai SS, Muthusamy K (2010) Evaluation of hypoglycemic activity of inorganic constituents in Nelumbo nucifera seeds on streptozotocin-induced diabetes in rats. Biol Trace Elem Res 138(1–3):226–237.  https://doi.org/10.1007/s12011-010-8614-4 CrossRefPubMedGoogle Scholar
  117. Mansour MH, Al-Qattan K, Thomson M, Ali M (2013) Garlic (Allium sativum) down-regulates the expression of angiotensin II AT1 receptor in adrenal and renal tissues of streptozotocin-induced diabetic rats. Inflammopharmacology 21:147–159.  https://doi.org/10.1007/s10787-012-0139-3 CrossRefPubMedGoogle Scholar
  118. McCalla G, Parshad O, Brown PD, Gardner MT (2016) Beta cell regenerating potential of Azadirachta indica (neem) extract in diabetic rats. West Indian Med J.  https://doi.org/10.7727/wimj.2014.224 CrossRefGoogle Scholar
  119. Meliani N, Dib MEA, Allali H, Tabti B (2011) Hypoglycaemic effect of Berberis vulgaris L. in normal and streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed 1(6):468–471.  https://doi.org/10.1016/S2221-1691(11)60102-0 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Mishra A, Srivastava R, Srivastava S, Gautam S, Tamrakar AK, Maurya R, Srivastava AK (2013) Antidiabetic activity of heart wood of Pterocarpus marsupium Roxb. and analysis of phytoconstituents. Indian J Exp Biol 51(5):363–374PubMedGoogle Scholar
  121. Mishra N, Kumar D, Rizvi SI (2016) Protective effect of Abelmoschus esculentus against alloxan-induced diabetes in Wistar strain rats. J Diet Suppl 13(6):634–646.  https://doi.org/10.3109/19390211.2016.1164787 CrossRefPubMedGoogle Scholar
  122. Modak M, Dixit P, Londhe J, Ghaskadbi S, Paul A, Devasagayam T (2007) Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr 40(3):163–173.  https://doi.org/10.3164/jcbn.40.163 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Mohanraj R, Sivasankar S (2014) Sweet potato (Ipomoea batatas [L.] Lam)—a valuable medicinal food: a review. J Med food 17(7):733–741CrossRefGoogle Scholar
  124. Mudi SR, Akhter M, Biswas SK, Muttalib MA, Choudhury S, Rokeya B, Ali L (2017) Effect of aqueous extract of Aegle marmelos fruit and leaf on glycemic, insulinemic and lipidemic status of type 2 diabetic model rats. J Complement Integr Med.  https://doi.org/10.1515/jcim-2016-0111 CrossRefPubMedGoogle Scholar
  125. Naderi R, Mohaddes G, Mohammadi M, Alihemmati A, Badalzadeh R, Ghaznavi R, Ghyasi R, Mohammadi S (2015) Preventive effects of garlic (Allium sativum) on oxidative stress and histopathology of cardiac tissue in streptozotocin-induced diabetic rats. Acta Physiol Hung 102:380–390.  https://doi.org/10.1556/036.102.2015.4.5 CrossRefPubMedGoogle Scholar
  126. Naowaboot J, Pannangpetch P, Kukongviriyapan V, Kongyingyoes B (2009) Antihyperglycemic, antioxidant and antiglycation activities of mulberry leaf extract in streptozotocin-induced chronic diabetic rats. Plant Foods Hum Nutr 64(2):116–121.  https://doi.org/10.1007/s11130-009-0112-5 CrossRefPubMedGoogle Scholar
  127. Narendhirakannan RT, Subramanian S (2010) Biochemical evaluation of the protective effect of Aegle marmelos (L.), Corr. leaf extract on tissue antioxidant defense system and histological changes of pancreatic beta-cells in streptozotocin-induced diabetic rats. Drug Chem Toxicol 33:120–130.  https://doi.org/10.3109/01480540903203984 CrossRefPubMedGoogle Scholar
  128. Narendhirakannan RT, Subramanian S, Kandaswamy M (2005) Mineral content of some medicinal plants used in the treatment of diabetes mellitus. Biol Trace Elem Res 103(2):109–115.  https://doi.org/10.1385/BTER:103:2:109 CrossRefPubMedGoogle Scholar
  129. Narendhirakannan RT, Subramanian S, Kandaswamy M (2006) Biochemical evaluation of antidiabetogenic properties of some commonly used Indian plants on streptozotocin-induced diabetes in experimental rats. Clin Exp Pharmacol Physiol 33(12):1150–1157.  https://doi.org/10.1111/j.1440-1681.2006.04507.x CrossRefPubMedGoogle Scholar
  130. Naskar S, Mazumder UK, Pramanik G, Gupta M, Kumar RB, Bala A, Islam A (2011) Evaluation of antihyperglycemic activity of Cocos nucifera Linn. on streptozotocin induced type 2 diabetic rats. J Ethnopharmacol 138(3):769–773.  https://doi.org/10.1016/j.jep.2011.10.021 CrossRefPubMedGoogle Scholar
  131. Ojewole JA (2002) Hypoglycaemic effect of Clausena anisata (Willd) Hook methanolic root extract in rats. J Ethnopharmacol 81(2):231–237.  https://doi.org/10.1016/S0378-8741(02)00085-5 CrossRefPubMedGoogle Scholar
  132. Ojewole JA (2005) Antinociceptive, anti-inflammatory and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract. J Ethnopharmacol 99(1):13–19.  https://doi.org/10.1016/j.jep.2005.01.025 CrossRefPubMedGoogle Scholar
  133. Oki N, Nonaka S, Ozaki S (2011) The effects of an arabinogalactan-protein from the white-skinned sweet potato (Ipomoea batatas L.) on blood glucose in spontaneous diabetic mice. Biosci Biotechnol Biochem 75(3):596–598.  https://doi.org/10.1271/bbb.100711 CrossRefPubMedGoogle Scholar
  134. Ovesná J, Mitrová K, Kučera L (2015) Garlic (A. sativum L.) alliinase gene family polymorphism reflects bolting types and cysteine sulphoxides content. BMC Genet 16:53.  https://doi.org/10.1186/s12863-015-0214-z CrossRefPubMedPubMedCentralGoogle Scholar
  135. Panaskar SN, Joglekar MM, Taklikar SS, Haldavnekar VS, Arvindekar AU (2013) Aegle marmelos Correa leaf extract prevents secondary complications in streptozotocin-induced diabetic rats and demonstration of limonene as a potent antiglycating agent. J Pharm Pharmacol 65:884–894.  https://doi.org/10.1111/jphp.12044 CrossRefPubMedGoogle Scholar
  136. Panda DK, Ghosh D, Bhat B, Talwar SK, Jaggi M, Mukherjee R (2009) Diabetic therapeutic effects of ethyl acetate fraction from the roots of Musa paradisiaca and seeds of Eugenia jambolana in streptozotocin-induced male diabetic rats. Methods Find Exp Clin Pharmacol 31(9):571–584.  https://doi.org/10.1358/mf.2009.31.9.1435645 CrossRefPubMedGoogle Scholar
  137. Pandey J, Maurya R, Raykhera R, Srivastava MN, Yadav PP, Tamrakar AK (2014) Murraya koenigii (L.) Spreng. ameliorates insulin resistance in dexamethasone-treated mice by enhancing peripheral insulin sensitivity. J Sci Food Agric 94:2282–2288.  https://doi.org/10.1002/jsfa.6555 CrossRefPubMedGoogle Scholar
  138. Pandit R, Phadke A, Jagtap A (2010) Antidiabetic effect of Ficus religiosa extract in streptozotocin-induced diabetic rats. J Ethnopharmacol 128(2):46462–46466.  https://doi.org/10.1016/j.jep.2010.01.025 CrossRefGoogle Scholar
  139. Pari L, Satheesh MA (2004) Antidiabetic activity of Boerhaavia diffusa L.: effect on hepatic key enzymes in experimental diabetes. J Ethnopharmacol 91(1):109–113.  https://doi.org/10.1016/j.jep.2003.12.013 CrossRefPubMedGoogle Scholar
  140. Pari L, Venkateswaran S (2003) Protective effect of Coccinia indica on changes in the fatty acid composition in streptozotocin induced diabetic rats. Die Pharmazie Int J Pharm Sci 58(6):409–412Google Scholar
  141. Patel SS, Goyal RK (2011) Prevention of diabetes-induced myocardial dysfunction in rats using the juice of the Emblica officinalis fruit. Exp Clin Cardiol 16:87–91PubMedPubMedCentralGoogle Scholar
  142. Patel OP, Mishra A, Maurya R, Saini D, Pandey J, Taneja I, Raju KS, Kanojiya S, Shukla SK, Srivastava MN, Wahajuddin M (2016) Naturally occurring carbazole alkaloids from Murraya koenigii as potential antidiabetic agents. J Nat Prod 79:1276–1284.  https://doi.org/10.1021/acs.jnatprod.5b00883 CrossRefPubMedGoogle Scholar
  143. Patil R, Patil R, Ahirwar B, Ahirwar D (2011) Isolation and characterization of anti-diabetic component (bioactivity-guided fractionation) from Ocimum sanctum L. (Lamiaceae) aerial part. Asian Pac J Trop Med 4:278–282.  https://doi.org/10.1016/S1995-7645(11)60086-2 CrossRefPubMedGoogle Scholar
  144. Paul S, Bandyopadhyay TK, Bhattacharyya A (2011) Immunomodulatory effect of leaf extract of Murraya koenigii in diabetic mice. Immunopharmacol Immunotoxicol 33:691–699.  https://doi.org/10.3109/08923973.2011.561354 CrossRefPubMedGoogle Scholar
  145. Phoboo S. Pinto MD, Barbosa ACL, Sarkar D, Bhowmik PC, Jha PK, Shetty K (2013) Phenolic-linked biochemical rationale for the anti-diabetic properties of Swertia chirayita (Roxb. ex Flem.) Karst. Phytother Res 27(2):227–235.  https://doi.org/10.1002/ptr.4714 CrossRefPubMedGoogle Scholar
  146. Phuwapraisirisan P, Puksasook T, Jong-aramruang J, Kokpol U (2008) Phenylethyl cinnamides: a new series of alpha-glucosidase inhibitors from the leaves of Aegle marmelos. Bioorg Med Chem Lett 18:4956–4958.  https://doi.org/10.1016/j.bmcl.2008.08.024 CrossRefPubMedGoogle Scholar
  147. Pinto IF, Silva RP, Filho AD, Dantas LS, Bispo VS, Matos IA, Otsuka FA, Santos AC, Matos HR (2015) Study of antiglycation, hypoglycemic, and nephroprotective activities of the green dwarf variety coconut water (Cocos nucifera L.) in alloxan-induced diabetic rats. J Med Food 18(7):802–809.  https://doi.org/10.1089/jmf.2014.0046 CrossRefPubMedGoogle Scholar
  148. Poonam T, Prakash GP, Kumar LV (2013) Influence of Allium sativum extract on the hypoglycemic activity of glibenclamide: an approach to possible herb-drug interaction. Drug Metab Drug Interact 28:225–230.  https://doi.org/10.1515/dmdi-2013-0031 CrossRefGoogle Scholar
  149. Poongothai K, Ponmurugan P, Ahmed KS, Kumar BS, Sheriff SA (2011) Antihyperglycemic and antioxidant effects of Solanum xanthocarpum leaves (field grown & in vitro raised) extracts on alloxan induced diabetic rats. Asian Pac J Trop Med 4(10):778–785.  https://doi.org/10.1016/S1995-7645(11)60193-4 CrossRefPubMedGoogle Scholar
  150. Prabhakar PK, Doble M (2008) A target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr Diabetes Rev 4(4):291–308CrossRefGoogle Scholar
  151. Puri D (2001) The insulinotropic activity of a Nepalese medicinal plant Biophytum sensitivum: preliminary experimental study. J Ethnopharmacol 78(1):89–93.  https://doi.org/10.1016/S0378-8741(01)00306-3 CrossRefPubMedGoogle Scholar
  152. Rajendran V, Krishnegowda A, Nachiappan V (2017) Antihyperlipidemic activity of Cassia auriculata flower extract in oleic acid induced hyperlipidemia in Saccharomyces cerevisiae. J Food Sci Technol 54(9):2965–2972.  https://doi.org/10.1007/s13197-017-2735-0 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Rani MP, Krishna MS, Padmakumari KP, Raghu KG, Sundaresan A (2012) Zingiber officinale extract exhibits antidiabetic potential via modulating glucose uptake, protein glycation and inhibiting adipocyte differentiation: an in vitro study. J Sci Food Agric 92(9):1948–1955.  https://doi.org/10.1002/jsfa.5567 CrossRefPubMedGoogle Scholar
  154. Rao PV, Gan SH (2014) Cinnamon: a multifaceted medicinal plant. Evid Based Complement Altern Med.  https://doi.org/10.1155/2014/642942 CrossRefGoogle Scholar
  155. Rao TP, Sakaguchi N, Juneja LR, Wada E, Yokozawa T (2005) Amla (Emblica officinalis Gaertn.) extracts reduce oxidative stress in streptozotocin-induced diabetic rats. J Med Food 8(3):362–368.  https://doi.org/10.1089/jmf.2005.8.362 CrossRefPubMedGoogle Scholar
  156. Rasineni K, Bellamkonda R, Singareddy SR, Desireddy S (2010) Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats. Pharmacogn Res 2(3):195–201.  https://doi.org/10.4103/0974-8490.65523 CrossRefGoogle Scholar
  157. Ravi K, Sekar DS, Subramanian S (2004a) Hypoglycemic activity of inorganic constituents in Eugenia jambolana seed on streptozotocin-induced diabetes in rats. Biol Trace Elem Res 99(1–3):145–155.  https://doi.org/10.1385/BTER:99:1-3:145 CrossRefPubMedGoogle Scholar
  158. Ravi K, Sivagnanam K, Subramanian S (2004b) Anti-diabetic activity of Eugenia jambolana seed kernels on streptozotocin-induced diabetic rats. J Med Food Summer 7(2):187–191.  https://doi.org/10.1089/1096620041224067 CrossRefGoogle Scholar
  159. Ravi K, Rajasekaran S, Subramanian S (2005) Antihyperlipidemic effect of Eugenia jambolana seed kernel on streptozotocin-induced diabetes in rats. Food Chem Toxicol 43(9):1433–1439.  https://doi.org/10.1016/j.fct.2005.04.004 CrossRefPubMedGoogle Scholar
  160. Ruikar AD, Khatiwora E, Ghayal NA, Misar AV, Mujumdar AM, Puranik VG, Deshpande NR (2011) Studies on aerial parts of Artemisia pallens wall for phenol, flavonoid and evaluation of antioxidant activity. J Pharm Bioallied Sci 3(2):302–305.  https://doi.org/10.4103/0975-7406.80768 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Sabitha V, Ramachandran S, Naveen KR, Panneerselvam K (2011) Antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus (L.) Moench. in streptozotocin-induced diabetic rats. J Pharm Bioallied Sci 3(3):397–402.  https://doi.org/10.4103/0975-7406.84447 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Sachdewa A, Khemani LD (2003) Effect of Hibiscus rosa sinensis Linn. ethanol flower extract on blood glucose and lipid profile in streptozotocin induced diabetes in rats. J Ethnopharmacol 89(1):61–66.  https://doi.org/10.1016/S0378-8741(03)00230-7 CrossRefPubMedGoogle Scholar
  163. Saha A, Mazumder S (2013) An aqueous extract of Murraya koenigii leaves induces paraoxonase 1 activity in streptozotocin induced diabetic mice. Food Funct 4:420–425.  https://doi.org/10.1039/C2FO30193H CrossRefPubMedGoogle Scholar
  164. Samad MB, Mohsin MN, Razu BA, Hossain MT, Mahzabeen S, Unnoor N, Muna IA, Akhter F, Kabir AU, Hannan JM (2017) [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice. BMC Complement Altern Med 17:395.  https://doi.org/10.1186/s12906-017-1903-0 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Saravanan M, Pandikumar P, Saravanan S, Toppo E, Pazhanivel N, Ignacimuthu S (2014) Lipolytic and antiadipogenic effects of (3,3-dimethylallyl) halfordinol on 3T3-L1 adipocytes and high fat and fructose diet induced obese C57/BL6J mice. Eur J Pharmacol 740:714–721.  https://doi.org/10.1016/j.ejphar.2014.06.004 CrossRefPubMedGoogle Scholar
  166. Satoh T, Igarashi M, Yamada S, Takahashi N, Watanabe K (2015) Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. J Ethnopharmacol 161:147–155.  https://doi.org/10.1016/j.jep.2014.12.009 CrossRefPubMedGoogle Scholar
  167. Sayyed FJ, Wadkar GH (2018) Studies on in-vitro hypoglycemic effects of root bark of Caesalpinia bonducella. Ann Pharm Fr 76(1):44–49.  https://doi.org/10.1016/j.pharma.2017.09.004 CrossRefPubMedGoogle Scholar
  168. Sharma SR, Dwivedi SK, Swarup D (1997) Hypoglycaemic, antihyperglycaemic and hypolipidemic activities of Caesalpinia bonducella seeds in rats. J Ethnopharmacol 58(1):39–44.  https://doi.org/10.1016/S0378-8741(97)00079-2 CrossRefPubMedGoogle Scholar
  169. Sharma B, Balomajumder C, Roy P (2008) Hypoglycemic and hypolipidemic effects of flavonoid rich extract from Eugenia jambolana seeds on streptozotocin induced diabetic rats 46:2376–2383.  https://doi.org/10.1016/j.fct.2008.03.020
  170. Sharma B, Salunke R, Balomajumder C, Daniel S, Roy P (2010) Anti-diabetic potential of alkaloid rich fraction from Capparis decidua on diabetic mice. J Ethnopharmacol 127(2):457–462.  https://doi.org/10.1016/j.jep.2009.10.013 CrossRefPubMedGoogle Scholar
  171. Sharma AK, Bharti S, Goyal S, Arora S, Nepal S, Kishore K, Joshi S, Kumari S, Arya DS (2011) Upregulation of PPARγ by Aegle marmelos ameliorates insulin resistance and β-cell dysfunction in high fat diet fed-streptozotocin induced type 2 diabetic rats. Phytother Res 25:1457–1465.  https://doi.org/10.1002/ptr.3442 CrossRefPubMedGoogle Scholar
  172. Sharma S, Pathak S, Gupta G, Kumar S (2017) Pharmacological evaluation of aqueous extract of Syzigium cumini for its antihyperglycemic and antidyslipidemic properties in diabetic rats fed a high cholesterol diet—role of PPAR g and PPAR a. Biomed Pharmacother 89:447–453.  https://doi.org/10.1016/j.biopha.2017.02.048 CrossRefPubMedGoogle Scholar
  173. Shen Y, Honma N, Kobayashi K, Jia LN, Hosono T, Shindo K, Ariga T, Seki T (2014) Cinnamon extract enhances glucose uptake in 3T3-L1 adipocytes and C2C12 myocytes by inducing LKB1-AMP-activated protein kinase signaling. PLoS One 9(2):e87894.  https://doi.org/10.1371/journal.pone.0087894 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Shidfar F, Rajab A, Rahideh T, Khandouzi N, Hosseini S, Shidfar S (2015) The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. J Complement Integr Med 12:165–170.  https://doi.org/10.1515/jcim-2014-0021 CrossRefPubMedGoogle Scholar
  175. Shirwaikar A, Rajendran K, Kumar CD, Bodla R (2004) Antidiabetic activity of aqueous leaf extract of Annona squamosa in streptozotocin–nicotinamide type 2 diabetic rats. J Ethnopharmacol 91(1):171–175.  https://doi.org/10.1016/j.jep.2003.12.017 CrossRefPubMedGoogle Scholar
  176. Singh N, Gupta M (2007) Effects of ethanolic extract of Syzygium cumini (Linn) seed powder on pancreatic islets of alloxan diabetic rats. Indian J Exp Biol 45(10):861–867PubMedGoogle Scholar
  177. Singh RK, Mehta S, Jaiswal D, Rai PK, Watal G (2009) Antidiabetic effect of Ficus bengalensis aerial roots in experimental animals. J Ethnopharmacol 123(1):110–114.  https://doi.org/10.1016/j.jep.2009.02.017 CrossRefPubMedGoogle Scholar
  178. Singh PK, Baxi D, Doshi A, AV R (2011) Antihyperglycaemic and renoprotective effect of Boerhaavia diffusa L. in experimental diabetic rats. J Complement Integr Med.  https://doi.org/10.2202/1553-3840.1533 CrossRefPubMedGoogle Scholar
  179. Sreelatha S, Inbavalli R (2012) Antioxidant, antihyperglycemic, and antihyperlipidemic effects of Coriandrum sativum leaf and stem in alloxan-induced diabetic rats. J Food Sci.  https://doi.org/10.1111/j.1750-3841.2012.02755.x CrossRefPubMedGoogle Scholar
  180. Srivastava S, Chandra D (2013) Pharmacological potentials of Syzygium cumini: a review. J Sci Food Agric 93(9):2084–2093.  https://doi.org/10.1002/jsfa.6111 CrossRefPubMedGoogle Scholar
  181. Stanely Mainzen Prince P, Menon VP (2003) Hypoglycaemic and hypolipidaemic action of alcohol extract of Tinospora cordifolia roots in chemical induced diabetes in rats. Phytother Res 17(4):410–413.  https://doi.org/10.1002/ptr.1130 CrossRefPubMedGoogle Scholar
  182. Stefkov G, Miova B, Dinevska-Kjovkarovska S, Stanoeva JP, Stefova M, Petrusevska G, Kulevanova S (2014) Chemical characterization of Centaurium erythrea L. and its effects on carbohydrate and lipid metabolism in experimental diabetes. J Ethnopharmacol 152(1):71–77.  https://doi.org/10.1016/j.jep.2013.11.047 CrossRefPubMedGoogle Scholar
  183. Stohs SJ, Ray S (2015) Anti-diabetic and anti-hyperlipidemic effects and safety of Salacia reticulata and related species. Phytother Res 29(7):986–995.  https://doi.org/10.1002/ptr.5382 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Suanarunsawat T, Anantasomboon G, Piewbang C (2016) Anti-diabetic and anti-oxidative activity of fixed oil extracted from Ocimum sanctum L. leaves in diabetic rats. Exp Ther Med 11:832–840.  https://doi.org/10.3892/etm.2016.2991 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Subramoniam A, Pushpangadan P, Rajasekharan S, Evans DA, Latha PG, Valsaraj R (1996) Effects of Artemisia pallens Wall. on blood glucose levels in normal and alloxan-induced diabetic rats. J Ethnopharmacol 50(1):13–17.  https://doi.org/10.1016/0378-8741(95)01329-6 CrossRefPubMedGoogle Scholar
  186. Sundaram R, Naresh R, Shanthi P, Sachdanandam P (2012) Antihyperglycemic effect of iridoid glucoside, isolated from the leaves of Vitex negundo in streptozotocin-induced diabetic rats with special reference to glycoprotein components. Phytomedicine 19(3–4):211–216.  https://doi.org/10.1016/j.phymed.2011.10.006 CrossRefPubMedGoogle Scholar
  187. Sunil C, Ignacimuthu S, Agastian P (2011) Antidiabetic effect of Symplocos cochinchinensis (Lour.) S. Moore. in type 2 diabetic rats. J Ethnopharmacol 134(2):298–304.  https://doi.org/10.1016/j.jep.2010.12.018 CrossRefPubMedGoogle Scholar
  188. Sunil C, Agastian P, Kumarappan C, Ignacimuthu S (2012) In vitro antioxidant, antidiabetic and antilipidemic activities of Symplocos cochinchinensis (Lour.) S. Moore bark. Food Chem Toxicol 50(5):1547–1553.  https://doi.org/10.1016/j.fct.2012.01.029 CrossRefPubMedGoogle Scholar
  189. Sunil V, Shree N, Venkataranganna MV, Bhonde RR, Majumdar M (2017) The anti-diabetic and antiobesity effect of Memecylon umbellatum extract in high fat diet induced obese mice. Biomed Pharmacother 89:880–886.  https://doi.org/10.1016/j.biopha.2017.01.182 CrossRefPubMedGoogle Scholar
  190. Tan BKH, Tan CH, Pushparaj PN (2005) Anti–diabetic activity of the semi-purified fractions of Averrhoa bilimbi in high fat diet fed–streptozotocin-induced diabetic rats. Life Sci 76(24):2827–2839.  https://doi.org/10.1016/j.lfs.2004.10.051 CrossRefPubMedGoogle Scholar
  191. Tembhurne SV, Sakarkar DM (2010) Influence of Murraya koenigii on experimental model of diabetes and progression of neuropathic pain. Res Pharm Sci 5(1):41–47PubMedPubMedCentralGoogle Scholar
  192. Thirumalai T, Therasa SV, Elumalai EK, David E (2011) Hypoglycemic effect of Brassica juncea (seeds) on streptozotocin induced diabetic male albino rat. Asian Pac J Trop Biomed 1(4):323–325.  https://doi.org/10.1016/S2221-1691(11)60052-X CrossRefPubMedPubMedCentralGoogle Scholar
  193. Thiyagarajan G, Muthukumaran P, Sarath Kumar B, Muthusamy VS, Lakshmi BS (2016) Selective inhibition of PTP1B by vitalboside A from syzygium cumini enhances insulin sensitivity and attenuates lipid accumulation via partial agonism to PPARγ. In vitro and in silico investigation. Chem Biol Drug Des 88(2):302–312CrossRefGoogle Scholar
  194. Tiwari P, Mishra BN, Sangwan NS (2014) Phytochemical and pharmacological properties of Gymnema sylvestre: an important medicinal plant. Biomed Res Int 2014:830295.  https://doi.org/10.1155/2014/830285 CrossRefGoogle Scholar
  195. Tripathi AK, Kohli S (2014) Pharmacognostical standardization and antidiabetic activity of Syzygium cumini (Linn) barks (Myrtaceae) on streptozotocin-induced diabetic rats. J Complement Integr Med 11(2):71–81.  https://doi.org/10.1515/jcim-2014-0011 CrossRefPubMedGoogle Scholar
  196. Uchegbu NN, Ishiwu CN (2016) Germinated Pigeon Pea (Cajanus cajan): a novel diet for lowering oxidative stress and hyperglycemia. Food Sci Nutr 4(5):772–777.  https://doi.org/10.1002/fsn3.343 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Venkatachalam T, Kumar VK, Selvi PK, Maske AO, Anbarasan V, Kumar PS (2011) Antidiabetic activity of Lantana camara Linn fruits in normal and streptozotocin-induced diabetic rats. J Pharm Res 4(5):1550–1552Google Scholar
  198. Venkatesh S, Reddy GD, Reddy YSR, Sathyavathy D, Reddy BM (2004) Effect of Helicteres isora root extracts on glucose tolerance in glucose-induced hyperglycemic rats. Fitoterapia 75(3):364–367.  https://doi.org/10.1016/j.fitote.2003.12.025 CrossRefPubMedGoogle Scholar
  199. Venkateswaran S, Pari L (2003) Effect of Coccinia indica leaf extract on plasma antioxidants in Streptozotocin-induced experimental diabetes in rats. Phyther Res 17:605–608.  https://doi.org/10.1002/ptr.1195 CrossRefGoogle Scholar
  200. Viswanathan V, Rao VN (2013) Problems associated with diabetes care in India. Diabetes Manag 3(1):31–40CrossRefGoogle Scholar
  201. Wainstein J, Ganz T, Boaz M, Bar Dayan Y, Dolev E, Kerem Z, Madar Z (2012) Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J Med Food 15(7):605–610.  https://doi.org/10.1089/jmf.2011.0243 CrossRefPubMedGoogle Scholar
  202. Wang Q, Jiang C, Fang S, Wang J, Ji Y, Shang X, Ni Y, Yin Z, Zhang J (2013) Antihyperglycemic, antihyperlipidemic and antioxidant effects of ethanol and aqueous extracts of Cyclocarya paliurus leaves in type 2 diabetic rats. J Ethnopharmacol 150(3):1119–1127.  https://doi.org/10.1016/j.jep.2013.10.040 CrossRefPubMedGoogle Scholar
  203. Wang HY, Kan WC, Cheng TJ, Yu SH, Chang LH, Chuu JJ (2014) Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice. Food Chem Toxicol 69:347–356.  https://doi.org/10.1016/j.fct.2014.04.008 CrossRefPubMedGoogle Scholar
  204. Xiao HT, Wen B, Ning ZW, Zhai LX, Liao CH, Lin CY, Mu HX, Bian ZX (2017) Cyclocarya paliurus tea leaves enhances pancreatic β cell preservation through inhibition of apoptosis. Sci Rep 7(1):9155CrossRefGoogle Scholar
  205. Xu X, Liang T, Wen Q, Lin X, Tang J, Zuo Q, Tao L, Xuan F, Huang R (2014) Protective effects of total extracts of Averrhoa carambola L. (Oxalidaceae) roots on streptozotocin-induced diabetic mice. Cell Physiol Biochem 33(5):1272–1282.  https://doi.org/10.1159/000358695 CrossRefPubMedGoogle Scholar
  206. Xu Y, Zhao Y, Sui Y, Lei X (2018) Protective effect of Pterocarpus marsupium bark extracts against cataract through the inhibition of aldose reductase activity in streptozotocin-induced diabetic male albino rats. 3 Biotech 8(4):188.  https://doi.org/10.1007/s13205-018-1210-6 CrossRefPubMedGoogle Scholar
  207. Xue WL, Li XS, Zhang J, Liu YH, Wang ZL, Zhang RJ (2007) Effect of Trigonella foenum-graecum (fenugreek) extract on blood glucose, blood lipid and hemorheological properties in streptozotocin-induced diabetic rats. Asia Pac J Clin Nutr 16(S1):422–426.  https://doi.org/10.6133/apjcn.2007.16.s1.77 CrossRefPubMedGoogle Scholar
  208. Yadav SP, Vats V, Ammini AC, Grover JK (2004) Brassica juncea (Rai) significantly prevented the development of insulin resistance in rats fed fructose-enriched diet. J Ethnopharmacol 93(1):113–116.  https://doi.org/10.1016/j.jep.2004.03.034 CrossRefPubMedGoogle Scholar
  209. Yadav SS, Singh MK, Singh PK, Kumar V (2017) Traditional knowledge to clinical trials: a review on therapeutic actions of Emblica officinalis. Biomed Pharmacother 93:1292–1302.  https://doi.org/10.1016/j.biopha.2017.07.065 CrossRefPubMedGoogle Scholar
  210. Yang CH, Li RX, Chuang LY (2012) Antioxidant activity of various parts of Cinnamomum cassia extracted with different extraction methods. Molecules 17(6):7294–7304.  https://doi.org/10.1016/j.biopha.2017.07.065 CrossRefPubMedPubMedCentralGoogle Scholar
  211. Yang SJ, Choi JM, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW, Park CY (2015) Preventive effects of bitter melon (Momordica charantia) against insulin resistance and diabetes are associated with the inhibition of NF-κB and JNK pathways in high-fat-fed OLETF rats. J Nutr Biochem 26:234–240.  https://doi.org/10.1016/j.jnutbio.2014.10.010 CrossRefPubMedGoogle Scholar
  212. Yankuzo H, Ahmed QU, Santosa RI, Akter SF, Talib NA (2011) Beneficial effect of the leaves of Murraya koenigii (Linn.) Spreng (Rutaceae) on diabetes-induced renal damage in vivo. J Ethnopharmacol 135:88–94.  https://doi.org/10.1016/j.jep.2011.02.020 CrossRefPubMedGoogle Scholar
  213. Zhang F, Lin L, Xie J (2016) A mini-review of chemical and biological properties of polysaccharides from Momordica charantia. Int J Biol Macromol 92:246–253.  https://doi.org/10.1016/j.ijbiomac.2016.06.101 CrossRefPubMedGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2018

Authors and Affiliations

  1. 1.Department of Biotechnology, School of Agriculture and BiosciencesKarunya Institute of Technology and Sciences (Deemed to be University)CoimbatoreIndia
  2. 2.Department of BiochemistryKongunadu Arts and Science CollegeCoimbatoreIndia

Personalised recommendations