Advertisement

3 Biotech

, 8:449 | Cite as

High-throughput sequencing analysis of Euphorbia fischeriana Steud provides insights into the molecular mechanism of pharmaceutical ingredient biosynthesis

  • Ming Jiang
  • Hui Li
Original Article

Abstract

High-throughput sequencing is an effective approach to analyse the bioinformation on the molecular biological and whole genome levels, especially in non-model plants for which reference genome sequences are unavailable. In this study, high-throughput sequencing analysis of Euphorbia fischeriana Steud was conducted on the Illumina HiSeq 2000 platform. A total of 9,6481,893 raw reads were generated and assembled into 304,217 transcripts and 186,384 unigenes. Of the 186,384 unigenes, 77.45% were annotated in at least one database, and some pathways involved in the biosynthesis of the terpenoid backbone were closely linked to the main anticancer components. In addition, 7452 transcription factors and 76,193 SSRs were detected. This study may provide a candidate pathway for terpenoid backbone biosynthesis in this medicinal plant.

Keywords

Euphorbia fischeriana Steud High-throughput sequencing analysis Diterpenoid biosynthesis 

Notes

Funding

This work was supported by the Fundamental Research Funds for Education Department of Heilongjiang Province (no. 2016-KYYWF-0869).

Compliance with ethical standards

Ethical approval

This article does not include any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not involve any informed consent.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Barrero RA, Chapman B, Yang Y, Moolhuijzen P, Keeble-Gagnère G, Zhang N, Tang Q, Bellaqrd MI, Qiu D (2011) De novo assembly of Euphorbia fischeriana root transcriptome identifies prostratin pathway related genes. BMC Genom 12:600–613.  https://doi.org/10.1186/1471-2164-12-600 CrossRefGoogle Scholar
  2. Bretagne S, Costa JM, Besmond C, Carsique R, Calderone R (1997) Microsatellite polymorphism in the promoter sequence of the elongation factor 3 gene of Candida albicans as basis for typing system. J Clin Microbiol 35:1777–1780. http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC229840&blobtype=pdf
  3. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomicsresearch. Bioinformatics 21:3674–3676.  https://doi.org/10.1093/bioinformatics/bti610 CrossRefPubMedGoogle Scholar
  4. Boer KD, Tilleman S, Pauwels L, Vanden RB, De VS, Vanderhaeghen R, Hilson P, Hanmill JD, Goossens A (2011) Apetala2/ethylene response factor and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J 66:1053–1065.  https://doi.org/10.1111/j.1365-313X.2011.04566.x CrossRefPubMedGoogle Scholar
  5. Field D, Wills C (1996) Long, polymorphic microsatellites in simple organisms. Proc Biol Sci 263:209–215.  https://doi.org/10.1098/rspb.1996.0033 CrossRefPubMedGoogle Scholar
  6. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma FD, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. https://www.nature.com/articles/nbt.1883.ris CrossRefGoogle Scholar
  7. Ha JM, Lee TY, Kim MY, Oliya BK, Gwag JG, Lee YH, Lee SH (2017) Comprehensive transcriptome analysis of Lactuca indica, a traditional medicinal wild plant. Mol Breed 37:112–123.  https://doi.org/10.1007/s11032-017-0711-z CrossRefGoogle Scholar
  8. He GH, Meng RH, Newman M, Gao GQ, Pittman RN, Prakash CS (2013) Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 3:3–8.  https://doi.org/10.1186/1471-2229-3-3 CrossRefGoogle Scholar
  9. Jian BY, Zhang H, Han CC, Liu JC (2018) Anti-cancer activities of diterpenoids derived from Euphorbia fischeriana Steud. Molecules 23:387–397.  https://doi.org/10.3390/molecules23020387 CrossRefGoogle Scholar
  10. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114.  https://doi.org/10.1093/nar/gkr988 CrossRefGoogle Scholar
  11. Kirby J, Nishimoto M, Park JG, Withers ST, Nowroozi F, Behrendt D, Rutledge EJ, Fortman JL, Johnson HE, Anderson JV, Keasling JD (2010) Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochemistry 71:1466–1473.  https://doi.org/10.1016/j.phytochem.2010.06.001 CrossRefPubMedGoogle Scholar
  12. Kuang XZ, Li W, Kanno Y, Yamashita N, Nemoto K, Asada Y, Koike K (2016) ent-Atisane diterpenoids from Euphorbia fischeriana inhibit mammosphere formation in MCF-7 cells. J Nat Med 70:1–7.  https://doi.org/10.1007/s11418-015-0940-6.CrossRefGoogle Scholar
  13. Li W, Li L, Chen ZJ (2014) Genetic diversity of germplasm resources of Euphorbia Fischeriana Steud based on ISSR makers. J Liaoning Univ Tradit Chin Med. 16:50–52.  https://doi.org/10.13194/j.issn.1673-842x.2014.03.018 (in Chinese) CrossRefGoogle Scholar
  14. Liu TM, Zeng LB, Zhu SY, Chen XJ, Tang QM, Mei SY, Tang SW (2015) Large-scale development of expressed sequence tag-derived simple sequence repeat markers by deep transcriptome sequencing in garlic (Allium sativum L.). Mol Breed 35:204–212.  https://doi.org/10.1007/s11032-015-0399-x CrossRefGoogle Scholar
  15. Ma DM, Pu GB, Lei CY, Ma LQ, Wang HH, Guo YW, Chen JL, Du ZG, Wang H, Li GF, Ye HC, Liu BY (2009) Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4, 11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol 50:2146–2161.  https://doi.org/10.1093/pcp/pcp149 CrossRefPubMedGoogle Scholar
  16. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108.  https://doi.org/10.1038/nprot.2008.73 CrossRefPubMedGoogle Scholar
  17. Shen L, Zhang SQ, Liu L, Sun Y, Wu YX, Xie LP, Liu JC (2017) Jolkinolide A and jolkinolide B inhibit proliferation of A549 cells and activity of human umbilical vein endothelial cells. Med Sci Monit 23:223–237. https://www.medscimonit.com/abstract/index/idArt/902704 CrossRefGoogle Scholar
  18. Sun YX, Liu JC (2011) Chemical constituents and biological activities of Euphorbia fischeriana Steud. Chem Biodivers 8:1205–1214.  https://doi.org/10.1002/cbdv.201000115 CrossRefPubMedGoogle Scholar
  19. Uemura D, Katayama CJ, Hirata Y (1997) Crystal and molecular structure of jolkinolide B, a novel oxidolactone diterpene. Tetrahedron Lett 3:283–284.  https://doi.org/10.1016/S0040-4039(01)92614-0 CrossRefGoogle Scholar
  20. Wang Y, Ma XQ, Yan SS, Shen SS, Zhu HL, Gu Y, Wang HB, Qin GW, Yu Q (2009) 17-Hydroxy-jolkinolide B inhibits signal transducers and activators of transcription 3 signaling by covalently cross-linking Janus Kinases and induces apoptosis of human cancer cells. Cancer Res 69:7302–7310.  https://doi.org/10.1158/0008-5472.CAN-09-0462 CrossRefPubMedGoogle Scholar
  21. Wang HB, Chen W, Zhang YY, Wang XY, Liu LP, Chen Y (2013) Four new diterpenoids from the roots of Euphorbia fischeriana. Fitoterapia 91:211–216.  https://doi.org/10.1016/j.fitote.2013.09.003 CrossRefPubMedGoogle Scholar
  22. Wang C, Zhang X, Yan X, Ye W, Ma S, Jiang Y (2017) Chemical profiling of Euphorbia fischeriana Steud by UHPLC-Q/TOF-MS. J Pharm Biomed Anal 151:126–132.  https://doi.org/10.1016/j.jpba.2017.12.051 CrossRefPubMedGoogle Scholar
  23. Wayne P, Michele M, Chaz A, Michael H, Julie V, Scott T (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238.  https://doi.org/10.1007/BF00564200 CrossRefGoogle Scholar
  24. Ye J, Fang L, Zheng HK, Zhang Y, Chen J, Zhang ZJ, Wang J, Li ST, Li RQ, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297.  https://doi.org/10.1093/nar/gkl031 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6:430–440.  https://doi.org/10.1016/S1369-5266(03)00081-5 CrossRefPubMedGoogle Scholar
  26. Zhang B, Zhang W, Nie RE, Li WZ, Segraves KA, Yang XK, Xue HJ (2016) Comparative transcriptome analysis of chemosensory genes in two sister leaf beetles provides insights into chemosensory speciation. Insect Biochem Mol Biol 79:108–118.  https://doi.org/10.1016/j.ibmb.2016.11.001 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Science and TechnologyQiqihar Medical UniversityQiqiharChina

Personalised recommendations