Advertisement

3 Biotech

, 8:448 | Cite as

Importance of Lupinus albescens in agricultural and food-related areas: A review

  • Tássia Carla Confortin
  • Izelmar Todero
  • Luciana Luft
  • Juliana Ferreira Soares
  • Marcio Antonio Mazutti
  • Giovani Leone Zabot
  • Marcus Vinícius Tres
Review Article

Abstract

The purpose of this review is to assist readers in understanding the importance of Lupinus albescens to nature, farmers, and scientists. L. albescens is mostly found in Argentina, Uruguay, Paraguay, and in “Campanha, Litoral and Missões” regions of State of Rio Grande do Sul (Brazil). Therefore, this review presents information and discussion on this plant that can encourage novel studies in a near future for exploring evermore the biological and physicochemical properties of L. albescens. The plant presents adaptive characteristics of soils with low content of nutrients, being an important plant for the recovering of degraded areas. In the last few years, there was an increase in scientific interest for exploring its chemical composition and biological activities. All plant matrices (i.e., roots, leaves, seeds, and stalks) are rich in antioxidant and antifungal compounds, especially stigmasterol. For example, the extracts obtained from the roots are reported with more than 50 wt% stigmasterol and 25 wt% ergosterol. Furthermore, the extracts present remarkable fungicide effects, especially against Fusarium oxysporum and Fusarium verticillioides.

Keywords

Lupinus albescens Chemical composition Extract Antioxidant Antifungal Degraded areas 

Notes

Acknowledgements

The authors thank Coordination for the Improvement of Higher Education Personnel (CAPES) for the scholarships, and Research Support Foundation of the State of Rio Grande do Sul (FAPERGS), and National Counsel of Technological and Scientific Development (CNPq) for the financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding this work.

References

  1. Abrão SF, Dorneles FDO, Luiz F, Eltz F et al (2013) Resposta do Lupinus albescens Hook. & Arn a diferentes doses de adubação em área degradada. Enciclopédia Biofera, Centro Científico Conhecer 9:2330–2338Google Scholar
  2. Anarat-Cappillino G, Sattely ES (2014) The chemical logic of plant natural product biosynthesis. Curr Opin Plant Biol 19:51–58CrossRefGoogle Scholar
  3. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475CrossRefGoogle Scholar
  4. Barbosa CS, Maia F, Santos DQS, Terrones MGH (2008) Potencial Herbicida do Extrato Diclorometanólico de Folha da Lixeira (Curatella americana L.). In: VIII Encontro Interno Xii Semin Iniciação Científica, pp 1–10Google Scholar
  5. Ben Lajnef H, Ferioli F, Pasini F et al (2018) Chemical composition and antioxidant activity of the volatile fraction extracted from air-dried fruits of Tunisian Eryngium maritimum L. ecotypes. J Sci Food Agric 98:635–643CrossRefGoogle Scholar
  6. Bouyahya A, Abrini J, Talbaoui A et al (2017a) Phytochemical screening, antiradical and antibacterial activities of Cistus crispus from Morocco. J Mater Environ Sci 8:1560–1566Google Scholar
  7. Bouyahya A, Bakri Y, Khay EO et al (2017b) Antibacterial, antioxidant and antitumor properties of Moroccan medicinal plants: a review. Asian Pac J Trop Dis 7:57–64CrossRefGoogle Scholar
  8. Brasil (2009) Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes/Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Mapa/ACS, BrasíliaGoogle Scholar
  9. Confortin TC, Todero I, Soares JF et al (2017) Extraction and composition of extracts obtained from Lupinus albescens using supercritical carbon dioxide and compressed liquefied petroleum gas. J Supercrit Fluids 128:395–403CrossRefGoogle Scholar
  10. Confortin TC, Todero I, Soares JF et al (2018) Extracts from Lupinus albescens: antioxidant power and antifungal activity in vitro against phytopathogenic fungi. Environ Technol 29:1–8CrossRefGoogle Scholar
  11. Coradin L, Siminski A, Reis A (2011) Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas pra o futuro. Instituto do Meio Ambiente e dos Recursos Naturais Renováveis, BrasíliaGoogle Scholar
  12. Dhakad AK, Pandey VV, Beg S et al (2018) Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: a review. J Sci Food Agric 98:833–848CrossRefGoogle Scholar
  13. Durán D, Rey L, Sánchez-Cañizares C et al (2013) Genetic diversity of indigenous rhizobial symbionts of the Lupinus mariae-josephae endemism from alkaline-limed soils within its area of distribution in Eastern Spain. Syst Appl Microbiol 36:128–136CrossRefGoogle Scholar
  14. Elbandy M, Rho J (2014) New flavone-di-C-glycosides from the seeds of Egyptian lupin (Lupinus termis). Phytochem Lett 9:127–131CrossRefGoogle Scholar
  15. Fadel F, Ben Hmamou D, Salghi R et al (2013) Antifungal activity and anti-corrosion inhibition of origanum compactum extracts. Int J Electrochem Sci 8:11019–11032Google Scholar
  16. Farag MA, Khattab AR, Ehrlich A et al (2018) Gas chromatography/mass spectrometry-based metabolite profiling of nutrients and antinutrients in eight Lens and Lupinus seeds (Fabaceae). J Agric Food Chem.  https://doi.org/10.1021/acs.jafc.8b00369 CrossRefPubMedGoogle Scholar
  17. Feng J, Ma M, Li R et al (2015) Synthesis and biological evaluation of hexahydropyrrolo[2,3-b]indole derivatives as fungicides against phytopathogenic fungi. Comb Chem High Throughput Screen 18:892–900CrossRefGoogle Scholar
  18. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523CrossRefGoogle Scholar
  19. French RJ (2016) Lupin: agronomy, 2nd edn. Elsevier Ltd, AmsterdamGoogle Scholar
  20. Fuentes E, Planchuelo AM (1997) Sterol and fatty acid patterns in wild and cultivated species of Lupinus (Leguminosae). Z. Naturforsch 52:9–14CrossRefGoogle Scholar
  21. Furlan AL, Bianucci E, Castro S, Dietz KJ (2017) Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation. Plant Sci 263:12–22CrossRefGoogle Scholar
  22. Giongo A, Beneduzi A, Ambrosini A et al (2010) Isolation and characterization of two plant growth-promoting bacteria from the rhizoplane of a legume (Lupinus albescens) in sandy soil. Rev Bras Ciênc Solo 34:361–369CrossRefGoogle Scholar
  23. Granada C, da Costa PB, Lisboa BB et al (2013) Comparison among bacterial communities present in arenized and adjacent areas subjected to different soil management regimes. Plant Soil 373:339–358CrossRefGoogle Scholar
  24. Granada CE, Beneduzi A, Lisboa BB et al (2015) Multilocus sequence analysis reveals taxonomic differences among Bradyrhizobium sp. symbionts of Lupinus albescens plants growing in arenized and non-arenized areas. Syst Appl Microbiol 38:323–329CrossRefGoogle Scholar
  25. Hamdan D, El-Readi MZ, Tahrani A et al (2011) Secondary metabolites of ponderosa lemon (Citrus pyriformis) and their antioxidant, anti-inflammatory, and cytotoxic activities. Zeitschrift fur Naturforsch Sect C J Biosci 66 C:385–393Google Scholar
  26. Hungria M, Campo RJ, Mendes IC (2007) A importância do processo de fixação biológica do nitrogênio para a cultura da soja: componente essencial para a competitividade do produto brasileiro. Embrapa, p 80Google Scholar
  27. Islam S, Ma W (2016) Lupine. Encycl Food Heal 579–585Google Scholar
  28. Jawed A, Dubey KK, Khan S et al (2015) Efficient solvent system for maximizing 3-demethylated colchicine recovery using response surface methodology. Process Biochem 50:2307–2313CrossRefGoogle Scholar
  29. Khan MK, Karnpanit W, Nasar-Abbas SM et al (2015) Phytochemical composition and bioactivities of lupin: a review. Int J Food Sci Technol 50:2004–2012CrossRefGoogle Scholar
  30. Lahlou M (2013) The success of natural products in drug discovery. Pharmacol Pharm 4:17–31CrossRefGoogle Scholar
  31. Li J, Liu X, Dong F et al (2011) Potential allelopathic effects of volatile oils from Descurainia sophia (L.) Webb ex Prantl on wheat. Biochem Syst Ecol 39:56–63CrossRefGoogle Scholar
  32. Marangoni C, De Moura NF, Garcia FRM (2012) Utilização de óleos essenciais e extratos de plantas no controle de insetos. Rev Ciênc Ambient 6:95–112Google Scholar
  33. Martínez-Alcalá I, Walker DJ, Bernal MP (2010) Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Ecotoxicol Environ Saf 73:595–602CrossRefGoogle Scholar
  34. Mbambo B, Odhav B, Mohanlall V (2012) Antifungal activity of stigmasterol, sitosterol and ergosterol from Bulbine natalensis Baker (Asphodelaceae). J Med Plants Res 6:5135–5141CrossRefGoogle Scholar
  35. Nile SH, Nile AS, Keum Y-S (2017) Total phenolics, antioxidant, antitumor, and enzyme inhibitory activity of Indian medicinal and aromatic plants extracted with different extraction methods. 3 Biotech 7:76CrossRefGoogle Scholar
  36. Oliveira SCC, Gualtieri SCJ, Macías Domínguez FA et al (2012) Estudo fitoquímico de folhas de Solanum lycocarpum A. St.-Hil (Solanaceae) e sua aplicação na alelopatia. Acta Bot Bras 26:607–618CrossRefGoogle Scholar
  37. Pavarini DP, Pavarini SP, Niehues M, Lopes NP (2012) Exogenous influences on plant secondary metabolite levels. Anim Feed Sci Technol 176:5–16CrossRefGoogle Scholar
  38. Perissé P, Torres L, Planchuelo AM (2000) Chromosome studies in some members of Lupinus (Fabaceae: Lupininae) of South America. Cytologia (Tokyo) 65:149–152CrossRefGoogle Scholar
  39. Petterson DS (2016) Lupin: overview, 2nd edn. Elsevier Ltd, AmsterdamGoogle Scholar
  40. Planchuelo AM, Dunn DB (1984) The simple leaved Lupines and their relatives in Argentina. Ann Mo Bot Gard 71(1):92–103CrossRefGoogle Scholar
  41. Planchuelo-Ravelo AM, Wink M (1993) Alkaloid composition of Lupinus albescens (Fabaceae) from South America. Zeitschrift fur Naturforsch Sect C J Biosci 48:414–416CrossRefGoogle Scholar
  42. Rascio N, La Rocca N (2013) Biological nitrogen fixation. Elsevier Inc, AmsterdamGoogle Scholar
  43. Roberto M, Stroschein D, Luiz F et al (2010) Symbiotic efficiency and genetic characteristics of Bradyrhizobium sp. strain UFSM LA 1. 3 isolated from Lupinus albescens (H. et Arn). Sci Agric 67:702–706CrossRefGoogle Scholar
  44. Roesch LFW, Vieira FCB, Pereira VA et al (2009) The Brazilian pampa: a fragile biome. Diversity 1:182–198CrossRefGoogle Scholar
  45. Rovedder APM (2007) Potencial do Lupinus albescens Hook. & Arn. Para recuperação de solos arenizados do Bioma Pampa. Thesis, University of Santa Maria, p 145Google Scholar
  46. Rovedder APM, Eltz FLF (2008a) Revegetação com plantas de cobertura em solos amenizados sob erosão eólica no Rio Grande do Sul. Rev Bras Cienc Solo 32:315–321CrossRefGoogle Scholar
  47. Rovedder APM, Eltz FLF (2008b) Desenvolvimento do Pinus elliottii e do Eucalyptus tereticornis consorciado com plantas de cobertura, em solos degradados por arenização. Ciênc Rural 38:84–89CrossRefGoogle Scholar
  48. Rovedder APM, Eltz FLF, Drescher MS et al (2009) Organismos edáficos como bioindicadores da recuperação de solos degradados por arenização no Bioma Pampa. Ciênc Rural 39:1051–1058CrossRefGoogle Scholar
  49. Rovedder APM, Eltz FLF, Dresher MS, Dorneles FO, Schenato RB (2010) Espaçamento entre linhas e densidade de semeadura em revegetação com espécie de tremoço visando à recuperação de solo degradado. Ciênc Rural 40(9):1955–1960CrossRefGoogle Scholar
  50. Sbihi HM, Nehdi IA, Tan CP, Al-Resayes SI (2013) Bitter and sweet lupin (Lupinus albus L.) seeds and seed oils: a comparison study of their compositions and physicochemical properties. Ind Crops Prod 49:573–579CrossRefGoogle Scholar
  51. Senica M, Stampar F, Veberic R, Mikulic-Petkovsek M (2017) The higher the better? Differences in phenolics and cyanogenic glycosides in Sambucus nigra leaves, flowers and berries from different altitudes. J Sci Food Agric 97:2623–2632CrossRefGoogle Scholar
  52. Simoes CMO (2006) Famacognosia, da Planta ao Medicamento, 6th edn. UFSC, Santa Catarina, BrasilGoogle Scholar
  53. Singh B, Sharma RA (2015) Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech 5:129–151CrossRefGoogle Scholar
  54. Suertegaray DMA, Verdum R, Bellanca ET, Uagoda RES (2005) Sobre a gênese da arenização no sudoeste do Rio Grande do Sul. Terra Livre 1:135–150Google Scholar
  55. Suluvoy JK, Berlin Grace VM (2017) Phytochemical profile and free radical nitric oxide (NO) scavenging activity of Averrhoa bilimbi L. fruit extract. 3 Biotech 7:85CrossRefGoogle Scholar
  56. Thambiraj SR, Phillips M, Koyyalamudi SR, Reddy N (2015) Antioxidant activities and characterisation of polysaccharides isolated from the seeds of Lupinus angustifolius. Ind Crops Prod 74:950–956CrossRefGoogle Scholar
  57. Trugo LC, von Baer E, von Baer D (2016) Lupin: breeding, 2nd edn. Elsevier Ltd, AmsterdamGoogle Scholar
  58. Uzun B, Arslan C, Karhan M, Toker C (2007) Fat and fatty acids of white lupin (Lupinus albus L.) in comparison to sesame (Sesamum indicum L.). Food Chem 102:45–49CrossRefGoogle Scholar
  59. Vaishnav P, Demain AL (2011) Unexpected applications of secondary metabolites. Biotechnol Adv 29:223–229CrossRefGoogle Scholar
  60. Vázquez S, Agha R, Granado A et al (2006) Use of white lupin plant for phytostabilization of Cd and as polluted acid soil. Water Air Soil Pollut 177:349–365CrossRefGoogle Scholar
  61. Villarino CBJ, Jayasena V, Coorey R et al (2016) Nutritional, health, and technological functionality of lupin flour addition to bread and other baked products: benefits and challenges. Crit Rev Food Sci Nutr 56:835–857CrossRefGoogle Scholar
  62. Wink M (1992) The role of quinolizidine alkaloids in plant-insect interactions. Insect Plant Interact 4:131–166Google Scholar
  63. Xia Q, Maharajah P, Cueff G et al (2018) Integrating proteomics and enzymatic profiling to decipher seed metabolism affected by temperature in seed dormancy and germination. Plant Sci 269:118–125CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Agricultural EngineeringFederal University of Santa MariaSanta MariaBrazil
  2. 2.Department of Chemical EngineeringFederal University of Santa MariaSanta MariaBrazil
  3. 3.Laboratory of Agroindustrial Processes Engineering (LAPE)Federal University of Santa MariaCachoeira do SulBrazil

Personalised recommendations