3 Biotech

, 8:439 | Cite as

In vitro antibacterial and early stage biofilm inhibitory potential of an edible chitosan and its phenolic conjugates against Pseudomonas aeruginosa and Listeria monocytogenes

  • Gabjin Kim
  • Chakradhar Dasagrandhi
  • Eun-Hye Kang
  • Sung-Hwan Eom
  • Young-Mog KimEmail author
Short Reports


In the present study, the antibacterial potential of chitosan grafted with phenolics (CPCs) such as caffeic acid (CCA), ferulic (CFA), and sinapic acid (CSA) were evaluated against foodborne pathogens like Pseudomonas aeruginosa (PA) and Listeria monocytogenes (LM). The geometric means of minimum inhibitory concentration (MIC range 0.05–0.33 mg/ml), bactericidal concentration (MBC range 0.30–0.45 mg/ml), biofilm inhibitory concentration (BIC range 0.42–0.83 mg/ml), and biofilm eradication concentration (BEC range 1.71–3.70 mg/ml) of CPCs were found to be lower than the MIC (0.12–1.08 mg/ml), MBC (0.17–1.84 mg/ml), BIC (4.0–4.50 mg/ml), and BEC (17.4–23.0 mg/ml) of unmodified chitosan against PA and LM. CPCs attenuated the biofilms of PA and LM by increasing the membrane permeability of bacteria embedded within the biofilms. Further, sub MIC of CPCs (0.5 × MIC) significantly reduced the biofilm adhesion (p < 0.001) by representative strains of LM (CCA: 72.2 ± 3.5, CFA: 79.3 ± 0.9, and CSA: 74.9 ± 1.5%) and PA (CCA: 64 ± 1.1, CFA: 67.8 ± 0.8, and CSA: 65.7 ± 4.9%). These results suggested the antibacterial and anti-biofilm potential of CPCs that can be exploited to control foodborne pathogenic infections.


Antibiofilm activity Biofilm-forming bacteria Chitosan-phenolic conjugates Foodborne pathogenic bacteria 



The authors would like to thank National Culture Collection for Pathogens, Gyeongsang National University Hospital Branch of (GNUH-NCCP) for supply of pathogens.


This research was supported by Marine Biotechnology Program funded by Ministry of Oceans and Fisheries, Republic of Korea (Grant number 20150220).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this manuscript.

Supplementary material

13205_2018_1451_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 KB)


  1. Bland JM, Altman DG (1996) Statistics notes-transforming data. BMJ 312:770. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Borges A, Saavedra MJ, Simoes M (2012) Activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 28:755–767. CrossRefPubMedGoogle Scholar
  3. Božič M, Gorgieva S, Kokol V (2012) Laccase-mediated functionalization of chitosan by caffeic and gallic acids for modulating antioxidant and antimicrobial properties. Carbohydr Polym 87:2388–2398. CrossRefGoogle Scholar
  4. Capita R, Alonso-Calleja C (2013) Antibiotic-resistant bacteria: a challenge for the food industry. Crit Rev Food Sci Nutr 53:11–48. CrossRefPubMedGoogle Scholar
  5. Chatterjee NS, Panda SK, Navita M, Asha KK, Anandan R, Mathew S (2015) Vanillic acid and coumaric acid grafted chitosan derivatives: improved grafting ratio and potential application in functional food. J Food Sci Technol 52:7153–7162. CrossRefGoogle Scholar
  6. Chen F, Shi Z, Neoh KG, Kang ET (2009) Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnol Bioeng 104:30–39. CrossRefPubMedGoogle Scholar
  7. Cheung RCF, Ng TB, Wong JH, Can WY (2015) Chitosan: an update on potential biomedical and pharmaceutical applications. Marine Drugs 13:5156–5186. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cho YS, Kim SK, Ahn CB, Je JY (2011) Preparation, characterization, and antioxidant properties of gallic acid-grafted-chitosans. Carbohydr Polym 83:1617–1622. CrossRefGoogle Scholar
  9. Condell O, Iversen C, Cooney S, Power KA, Walsh C, Burgess C, Fannings S (2012) Efficacy of biocides used in the modern food industry to control Salmonella enterica, and links between biocide tolerance and resistance to clinically relevant antimicrobial compounds. Appl Environ Microbiol 78:3087–3097. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Eom SH, Kang SK, Lee DS, Myeong JI, Lee J, Kim HW, Kim KH, Je JY, Jung WK, Kim YM (2016) Synergistic antimicrobial effect and antimicrobial mode of action of chitosan-ferulic acid conjugate against methicillin-resistant Staphylococcus aureus. J Microbiol Biotechnol 26:784–789. CrossRefPubMedGoogle Scholar
  11. Gandhi M, Chikindas ML (2007) Listeria monocytogenes: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15. CrossRefPubMedGoogle Scholar
  12. Ghsarras HE (2009) Polyphenols: food sources, properties and applications-a review. Int J Food Sci Technol 44:2512–2518. CrossRefGoogle Scholar
  13. Goy RC, Britto DD, Assis OB (2009) A review of the antimicrobial activity of chitosan. Polimeros 19:241–247. CrossRefGoogle Scholar
  14. Kaplan BJ (2010) Food additives and behavior: first genetic insights. Am J Psychiatry 167:1023e1025. CrossRefGoogle Scholar
  15. Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Laskar K, Faisal SM, Rauf A, Ahmed A, Owais M (2017) Undec-10-enoic acid functionalized chitosan based novel nano-conjugate: an enhanced anti-bacterial/biofilm and anti-cancer potential. Carbohydr Polym 166:14–23. CrossRefPubMedGoogle Scholar
  17. Lee DS, Je JY (2013) Gallic acid grafted chitosan inhibits foodborne pathogens by a membrane damage mechanism. J Agric Food Chem 61:6574–6579. CrossRefPubMedGoogle Scholar
  18. Lee DS, Woo JY, Ahn CB, Je JY (2014) Chitosan–hydroxycinnamic acid conjugates: preparation, antioxidant and antimicrobial activity. Food Chem 148:97–104. CrossRefPubMedGoogle Scholar
  19. Lei F, Wang X, Liang C, Yuan F, Gao Y (2013) Preparation and functional evaluation of chitosan-EGCG conjugates. J Appl Polym Sci 131:39732. CrossRefGoogle Scholar
  20. Lin S, Yang L, Chen G, Li B, Chen D, Li L, Xu Z (2017) Pathogenic features and characteristics of foodborne pathogen biofilm: biomass, viability and matrix. Microb Pathog 111:285–291. CrossRefPubMedGoogle Scholar
  21. Liu J, Pu H, Liu S, Kan J, Jin C (2017) Synthesis, characterization, bioactivity and potential applications of phenolic acid grafted chitosan: a review. Carbohydr Polym 174:999–1017. CrossRefPubMedGoogle Scholar
  22. Magalhaes L, Nitschke M (2013) Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 29:138–142. CrossRefGoogle Scholar
  23. Martinez LR, Mihu MR, Tar M, Cordero RJB, Han G, Friedman AJ, Friedman JM, Nosanchuck JD (2010) Demonstration of anti biofilm and antifungal efficacy of chitosan against candida biofilms, using an in vivo central venus catheter model. J Infect Dis 201:1436–1440. CrossRefPubMedGoogle Scholar
  24. Miao J, Liang Y, Chen L, Wang W, Wang J, Li B, Li L, Chen D, Xu Z (2017) Formation and development of staphylococcus biofilms: with focus on food safety. J Food Saf. CrossRefGoogle Scholar
  25. Moltz AG, Martin SE (2005) Formation of biofilms by Listeria monocytogenes under various growth conditions. J Food Protect 68:92–97CrossRefGoogle Scholar
  26. Mu H, Guo F, Niu H, Liu Q, Wang S, Jinyou D (2014) Chitosan improves antibiofilm efficacy of gentamicin through antibiotic penetration. Int J Mol Sci 15:22296–23308. CrossRefPubMedPubMedCentralGoogle Scholar
  27. National Committee for Clinical Laboratory Standards (NCCLS) (2003) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. NCCLS document M7-A6, 6th edn. NCCLS, WayneGoogle Scholar
  28. No HK, Meyers SP, Prinyawiwatkul W, Xu Z (2007) Application of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci 72:R87–R100. CrossRefPubMedGoogle Scholar
  29. Nostro A, Roccaro AS, Bisignano G, Marino A, Canatelli MA, Pizzimenti FS, Cioni PL, Procopio F, Blanko AR (2007) Effects of oregano, carvacrol, and thyme on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 56:519–523. CrossRefPubMedGoogle Scholar
  30. Ong TH, Chitra E, Ramamurthy S, Siddalingam RP, Yuen KH, Ambu SP, Davamani F (2017) Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms. PloS One 12(4):e0176629. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Panwar R, Penmaraju SC, Sharma AK, Pruthi V (2016) Efficacy of ferulic acid encapsulated chitosan nano particles against Candida albicans biofilms. Microb Pathog 95:21–31. CrossRefPubMedGoogle Scholar
  32. Patale RL, Patravale VB (2011) O, N-carboxymethyl chitosan-zinc complex: a novel chitosan complex with enhanced antimicrobial activity. Carbohydr Polym 85:105–110. CrossRefGoogle Scholar
  33. Raafat D, Borgen KV, Haas A, Sahl HG (2008) Insights into the antimicrobial action of chitosan as an antimicrobial compound. Appl Environ Microbiol 74(12):3764–3773. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. CrossRefGoogle Scholar
  35. Rybtke M, Hultquist I, Givskov M, Tolker-Nielsen T (2015) Pseudomonas aeruginosa biofilm infections; community structure, antimicrobial tolerance and immune response. J Mol Biol 427:3628–3645. CrossRefPubMedGoogle Scholar
  36. Schuschat A, Swaminathan B, Broome C (1991) Epidemiology of human listeriosis. Clin Microbiol Rev 4:169–183. CrossRefGoogle Scholar
  37. Song K (2013) An in vitro study of the anti-biofilm properties of proanthocyanidins and chitosan in Pseudomonas syringae pv. Papulans. Dissertation, Stony Brooke UniversityGoogle Scholar
  38. Tan Y, Han F, Yu W (2011) Carboxymethyl chitosan prevents formation of broad spectrum biofilm. Carbohydr Polym 84:1365–1370. CrossRefGoogle Scholar
  39. Tao Y, Quain LH, Xie J (2011) Effect of chitosan on membrane permeability and cell morphology of Pseudomonas aeruginosa and Staphylococcus aureus. Carbohydr Polym 86:969–974. CrossRefGoogle Scholar
  40. Thaya R, Vaseeharan B, Sivakamavalli J, Iswarys A, Govindarajan M, Alherbi NS, Kadaikunnan S, Al-anbr MN, Khaled JM, Banelli G (2018) Synthesis of chitosan-alginate microspheres with high antimicrobial and antibiofilm activity against multidrug resistant microbial pathogens. Microb Pathog 114:17–24. CrossRefPubMedGoogle Scholar
  41. Wang H, Qian J, Ding F (2018) Emerging chitosan-based films for food packaging applications. J Food Agric Chem 66:395–413. CrossRefGoogle Scholar
  42. Xie J, Yang L, Peters BM, Chen L, Chen D, Li B, Li L, Yu G, Xu Z, Shirtliff ME (2017) A 16-year retrospective surveillance report on the pathogenic features and antimicrobial susceptibility of Pseudomonas aeruginosa isolates from FAHJU in Guangzhou representative of Southern China. Microb Pathog 110:37–41. CrossRefPubMedGoogle Scholar
  43. Xu Z, Liang Y, Lin S, Chen D, Li B, Li N, Deng Y (2016) Crystal violet and XTT assays on Staphylococcus aureus biofilm quantification. Curr Microbiol 73:472–482. CrossRefGoogle Scholar
  44. Yang C, Han B, Zheng Y, Liu L, Li C, Sheng S, Zhang J, Wang J, Wu F (2016a) The quality changes of post harvest mulberry fruit treated by chitosan-g-caffeic acid during cold storage. J Food Sci 81:881–887. CrossRefGoogle Scholar
  45. Yang C, Zhou Y, Zheng Y, Li C, Sheng S, Wang J, Wu F (2016b) Enzymatic modification of chitosan by cinnamic acids: antibacterial activity against Ralstonia solanacearum. Int J Biol Macromol 87:577–585. CrossRefPubMedGoogle Scholar
  46. Zhang A, Mu H, Zhang W, Cui G, Zhu J, Duan J (2013) Chitosan coupling makes microbial biofilms susceptible to antibiotics. Sci Rep 3:3364. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zhang H, Jung J, Zhao Y (2016) Partial characterization of preparation, characterization and evaluation of antibacterial activity of catechins and catechins-Zn complex loaded β-chitosan nanoparticles of different particle sizes. Carbohydr polym 137:82–91. CrossRefPubMedGoogle Scholar
  48. Zhang G, Liu J, Jiao S, Feng C, Wang ZA, Du Y (2018) Conjugation of inulin improves anti biofilm activity of chitosan. Mar Drugs 16:151. CrossRefPubMedCentralGoogle Scholar
  49. Zheng LY, Zhu JF (2003) Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym 54:527–530. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gabjin Kim
    • 1
  • Chakradhar Dasagrandhi
    • 2
  • Eun-Hye Kang
    • 1
  • Sung-Hwan Eom
    • 3
  • Young-Mog Kim
    • 1
    • 2
    Email author
  1. 1.Department of Food Science and TechnologyPukyong National UniversityBusanSouth Korea
  2. 2.Marine-Integrated Bionics Research CenterPukyong National UniversityBusanSouth Korea
  3. 3.Department of Food Science and TechnologyDongeui UniversityBusanSouth Korea

Personalised recommendations