Advertisement

3 Biotech

, 8:406 | Cite as

The draft genome sequence of Clostridium sp. strain LJ4 with high furan and phenolic derivates’ tolerances occurring from lignocellulosic hydrolysates

  • Jie Liu
  • Yujia Jiang
  • Tianpeng Chen
  • Weiliang Dong
  • Wenming Zhang
  • Jiangfeng Ma
  • Min Jiang
  • Fengxue Xin
Genome Reports
  • 23 Downloads

Abstract

The genome of a wild-type solventogenic Clostridium sp. strain LJ4 that could directly convert undetoxified lignocellulosic hydrolysate to butanol and tolerate high concentration of furan and phenolic derivates occurring in the lignocellulosic hydrolysate is described. 16S rDNA gene sequencing and analysis indicated that it is closely related to Clostridium acetobutylicum. The genome size of strain LJ4 is 3.90 Mp, which has a G + C content of 30.72% and encodes 2711 proteins. It also has one 0.19 Mp plasmid with 181 predicted encoding proteins. Alcohol dehydrogenases (ADs) and a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent flavin mononucleotide (FMN) reductase were identified, which may play key roles in inhibitors’ resistance in lignocellulosic hydrolysate.

Keywords

Clostridium Draft genome sequencing Furan and phenolic derivates Alcohol dehydrogenases NADPH-dependent FMN reductase 

Notes

Acknowledgements

This work was supported by the Jiangsu Province Natural Science Foundation for Youths (BK20170993, BK20170997), the Project of State Key Laboratory of Materials-Oriented Chemical Engineering (KL16-08), the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (XTE1840), the Key Science and Technology Project of Jiangsu Province (BE2016389), and the National Natural Science Foundation of China (no. 21706125, no. 21727818, no. 21706124, no. 31700092).

Compliance with ethical standards

Conflict of interest

The authors have declared there was no conflict of interest.

References

  1. Agrawal M, Chen RR (2011) Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4. Biotechnol Lett 33:2127–2133CrossRefPubMedGoogle Scholar
  2. Baral NR, Shah A (2014) Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 98:9151–9172CrossRefPubMedGoogle Scholar
  3. Chen C, Sun C, Wu YR (2018) The draft genome sequence of a novel high-efficient butanol-producing bacterium Clostridium diolis strain WST. Curr Microbiol 75:1011–1015CrossRefPubMedGoogle Scholar
  4. Dong JJ, Han RZ, Xu GC, Gong L, Xing WR, Ni Y (2018) Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864. Bioresour Technol 259:40–45.  https://doi.org/10.1016/j.biortech.2018.02.098 CrossRefPubMedGoogle Scholar
  5. Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469CrossRefPubMedGoogle Scholar
  6. Filannino P, Bai Y, Di CR, Gobbetti M, Gänzle MG (2015) Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiol 46:272–279CrossRefPubMedGoogle Scholar
  7. Gu Y et al (2011) Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer. Biotechnol J 6:1348–1357CrossRefPubMedGoogle Scholar
  8. Guo T, Tang Y, Zhang QY, Du TF, Liang DF, Jiang M, Ouyang PK (2012) Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation. J Ind Microbiol Biotechnol 39:401–407.  https://doi.org/10.1007/s10295-011-1017-5 CrossRefPubMedGoogle Scholar
  9. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119CrossRefGoogle Scholar
  10. Jurgens G, Survase S, Berezina O et al (2012) Butanol production from lignocellulosics. Biotechnol Lett 34:1415–1434CrossRefPubMedGoogle Scholar
  11. Lee SH, Yun EJ, Kim J, Sang JL, Um Y, Kim KH (2016) Biomass, strain engineering, and fermentation processes for butanol production by solventogenic Clostridia. Appl Microbiol Biotechnol 100:1–17CrossRefGoogle Scholar
  12. Liu ZL, Slininger PJ, Gorsich SW (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121(1–3):451–460CrossRefPubMedGoogle Scholar
  13. Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743–753CrossRefPubMedGoogle Scholar
  14. Liu J, Guo T, Yang T, Xu J, Tang C, Liu D, Ying H (2017) Transcriptome analysis of Clostridium beijerinckii adaptation mechanisms in response to ferulic acid. Int J Biochem Cell B 86:14–21CrossRefGoogle Scholar
  15. Liu J, Lin Q, Chai X, Luo Y, Guo T (2018) Enhanced phenolic compounds tolerance response of Clostridium beijerinckii NCIMB 8052 by inactivation of Cbei_3304. Microb Cell Fact 17:35.  https://doi.org/10.1186/s12934-018-0884-0 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17Google Scholar
  17. Mukai N, Masaki K, Fujii T, Iefuji H (2014) Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production. J Biosci Bioeng 118:50CrossRefPubMedGoogle Scholar
  18. Nawrocki EP, Burge SW, Bateman A et al (2014) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43(D1):D130–D137CrossRefPubMedPubMedCentralGoogle Scholar
  19. Shanmugam S, Sun C, Zeng X, Wu YR (2018) High-efficient production of biobutanol by a novel Clostridium sp. strain WST with uncontrolled pH strategy. Bioresour Technol 256:543–547CrossRefPubMedGoogle Scholar
  20. Sharma HK, Xu C, Qin W (2017) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview waste and biomass valorization.  https://doi.org/10.1007/s12649-017-0059-y
  21. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829CrossRefPubMedPubMedCentralGoogle Scholar
  22. Zhang Y, Han B, Ezeji TC (2012) Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. New Biotechnol 29:345–351CrossRefGoogle Scholar
  23. Zhang Y, Ujor V, Wick M, Ezeji TC (2015) Identification, purification and characterization of furfural transforming enzymes from Clostridium beijerinckii NCIMB 8052. Anaerobe 33:124–131.  https://doi.org/10.1016/j.anaerobe.2015.03.005 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jie Liu
    • 1
  • Yujia Jiang
    • 1
  • Tianpeng Chen
    • 1
  • Weiliang Dong
    • 1
    • 2
  • Wenming Zhang
    • 1
    • 2
  • Jiangfeng Ma
    • 1
    • 2
  • Min Jiang
    • 1
    • 2
  • Fengxue Xin
    • 1
    • 2
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations