Advertisement

3 Biotech

, 8:387 | Cite as

Screening, purification and characterization of lipase from Burkholderia pyrrocinia B1213

  • Jinlong Li
  • Weijia Shen
  • Guangsen Fan
  • Xiuting Li
Original Article
  • 40 Downloads

Abstract

A lipase producing strain B1213 isolated from soil was identified as Burkholderia pyrrocinia based on 16S rRNA gene and recA sequeence analysis, making this the first report on the presence of a lipase from B. pyrrocinia. Under an aqueous two-phase purification strategy, which included (ATPE)-ion-exchange chromatography (IEC)-gel and filtration chromatography (GFC), the specific activity of the 35-kDa lipase was determined to be 875.7 U/mg protein. The optimum pH and temperature of this lipase was pH 8.0 and 50 °C, respectively. The lipase retained > 85% activity in isopropanol and acetone at 30 °C for 10 min but the activity was reduced to 10.6% in n-hexane. Mg2+, Al3+, Mn2+, and Fe3+ enhanced lipase activity at both 1 mM and 5 mM concentrations. p-NPP, a long-chain acyl group 4-NP ester, appeared to be a good substrate candidate.

Keywords

B. pyrrocinia Lipase Screening Purification Characterization 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers: 31501487, 31671798). We are grateful to Professor Madhav P. Yadav for his helpful promoting in the language quality of this article.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

13205_2018_1414_MOESM1_ESM.docx (1018 kb)
Supplementary material 1 (DOCX 1018 KB)

References

  1. Aguieiras ECG, Cavalcanti-Oliveira ED, Freire DMG (2015) Current status and new developments of biodiesel production using fungal lipases. Fuel 159:52–67CrossRefGoogle Scholar
  2. Boran R, Ugur A (2016) Burkholderia multivorans SB6 lipase as a detergent ingredient: characterization and stabilization. J Surfactants Deterg 19(1):39–48CrossRefGoogle Scholar
  3. Carrasco-Lopez C, Godoy C, de Las RB, Fernandez-Lorente G, Palomo JM, Guisan JM, Fernandez-Lafuente R, Martinez-Ripoll M, Hermoso JA (2009) Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements. J Biol Chem 284(7):4365–4372CrossRefPubMedGoogle Scholar
  4. Castro-Ochoa LD, Rodríguez-Gómez C, Valerio-Alfaro G, Ros O, R (2005) Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme Microbial Technol 37(6):648–654CrossRefGoogle Scholar
  5. de Abreu L, Fernandez-Lafuente R, Rodrigues RC, Volpato G, Ayub MAZ (2014) Efficient purification-immobilization of an organic solvent-tolerant lipase from Staphylococcus warneri EX17 on porous styrene-divinylbenzene beads. J Mol Catal B: Enzym 99:51–55CrossRefGoogle Scholar
  6. Feng X, Patterson DA, Balaban M, Emanuelsson EAC (2013) Characterization of tributyrin hydrolysis by immobilized lipase on woolen cloth using conventional batch and novel spinning cloth disc reactors. Chem Eng Res Des 91(9):1684–1692CrossRefGoogle Scholar
  7. Gog A, Roman M, Toşa M, Paizs C, Irimie FD (2012) Biodiesel production using enzymatic transesterification – Current state and perspectives. Renewable Energy 39(1):10–16CrossRefGoogle Scholar
  8. Gotor-Fernández V, Busto E, Gotor V (2006) Candida antarctica lipase B: an ideal biocatalyst for the preparation of nitrogenated organic compounds. Adv Synth Catal 348(7–8):797–812CrossRefGoogle Scholar
  9. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64(6):763–781CrossRefPubMedGoogle Scholar
  10. Gupta R, Kumari A, Syal P, Singh Y (2015) Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology. Prog Lipid Res 57:40–54CrossRefPubMedGoogle Scholar
  11. Gutarra MLE, Godoy MG, Maugeri F, Rodrigues MI, Freire DMG, Castilho LR (2009) Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Biores Technol 100(21):5249–5254CrossRefGoogle Scholar
  12. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microbial Technol 39(2):235–251CrossRefGoogle Scholar
  13. Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15(1):29CrossRefPubMedGoogle Scholar
  14. Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: Some hot issues and recent developments. Biotechnol Adv 26(5):457–470CrossRefPubMedGoogle Scholar
  15. Joseph B, Upadhyaya S, Ramteke P (2011) Production of cold-active bacterial lipases through semisolid state fermentation using oil cakes. Enzym Res 2011:1–6CrossRefGoogle Scholar
  16. Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47(4):555–569CrossRefGoogle Scholar
  17. Laane C, Boeren S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30(1):81–87CrossRefPubMedGoogle Scholar
  18. Lesuisse E, Schanck K, Colson C (1993) Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme. Eur J Biochem 216(1):155–160CrossRefPubMedGoogle Scholar
  19. Maiangwa J, Ali MSM, Salleh AB, Rahman RNZR, Shariff FM, Leow TC (2015) Adaptational properties and applications of cold-active lipases from psychrophilic bacteria. Extremophiles 19(2):235–247CrossRefPubMedGoogle Scholar
  20. Masomian M, Rahman RNZR, Salleh AB, Basri M (2013) A new thermostable and organic solvent-tolerant lipase from Aneurinibacillus thermoaerophilus strain HZ. Process Biochem 48(1):169–175CrossRefGoogle Scholar
  21. Mathiazakan P, Shing SY, Ying SS, Kek HK, Tang MSY, Show PL, Ooi C, Ling TC (2016) Pilot-scale aqueous two-phase floatation for direct recovery of lipase derived from Burkholderia cepacia strain ST8. Sep Purif Technol 171:206–213CrossRefGoogle Scholar
  22. McKevitt AI, Woods DE (1984) Characterization of pseudomonas cepacia isolates from patients with cystic fibrosis. J Clin Microbiol 19(2):291–293PubMedPubMedCentralGoogle Scholar
  23. Nagarajan S (2012) New tools for exploring “Old friends—microbial lipases”. Appl Biochem Biotechnol 168(5):1163–1196CrossRefPubMedGoogle Scholar
  24. Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29(Pt 2):119–131PubMedGoogle Scholar
  25. Pleiss J, Fischer M, Schmid RD (1998) Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem Phys Lipid 93(1–2):67–80CrossRefGoogle Scholar
  26. Salameh MA, Wiegel J (2010) Effects of detergents on activity, thermostability and aggregation of two alkalithermophilic lipases from thermosyntropha lipolytica. Open Biochem 4(2):22–28CrossRefGoogle Scholar
  27. Salihu A, Alam MZ (2015) Solvent tolerant lipases: a review. Process Biochem 50(1):86–96CrossRefGoogle Scholar
  28. Saxena RK, Sheoran A, Giri B, Davidson WS (2003) Purification strategies for microbial lipases. J Microbiol Methods 52(1):1–18CrossRefPubMedGoogle Scholar
  29. Sugimura Y, Fukunaga K, Matsuno T, Nakao K, Goto M, Nakashio F (2000) A study on the surface hydrophobicity of lipases. Biochem Eng J 5(2):123–128CrossRefPubMedGoogle Scholar
  30. Thakur S (2012) Lipases, its sources, properties and applications: a review. Int J Sci Eng Res 3(7):1–29Google Scholar
  31. Ungcharoenwiwat P, H-Kittikun A (2015) Purification and characterization of lipase from Burkholderia sp. EQ3 isolated from wastewater from a canned fish factory and its application for the synthesis of wax esters. J Mol Catal B Enzym 115:96–104CrossRefGoogle Scholar
  32. Uppenberg J, Hansen MT, Patkar S, Jones TA (1994) The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2(4):293–308CrossRefPubMedGoogle Scholar
  33. Vandamme P, Dawyndt P (2011) Classification and identification of the Burkholderia cepacia complex: past, present and future. Syst Appl Microbiol 34(2):87–95CrossRefPubMedGoogle Scholar
  34. Velu N, Divakar K, Nandhinidevi G, Gautam P (2012) Lipase from Aeromonas caviae AU04: isolation, purification and protein aggregation. Biocatal Agric Biotechnol 1(1):45–50Google Scholar
  35. Verma N, Thakur S, Bhatt AK (2012) Microbial lipases: industrial applications and properties (a review). Int Res J Biol Sci 1(8):88–92Google Scholar
  36. Vial L, Chapalain A, Groleau M, Déziel E (2011) The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation. Environ Microbiol 13(1):1–12CrossRefPubMedGoogle Scholar
  37. Yang Z, Zhang K, Huang Y, Wang Z (2010) Both hydrolytic and transesterification activities of Penicillium expansum lipase are significantly enhanced in ionic liquid [BMIm][PF6]. J Mol Catal B Enzym 63(1–2):23–30CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingPeople’s Republic of China
  2. 2.Beijing Higher Institution Engineering Research Center of Food Additives and IngredientsBeijingPeople’s Republic of China
  3. 3.Beijing Key Laboratory of Flavor ChemistryBeijingPeople’s Republic of China

Personalised recommendations