Advertisement

3 Biotech

, 8:390 | Cite as

Evaluation of cancer stemness in breast cancer and glioblastoma spheroids in vitro

  • Açelya Yilmazer
Original Article

Abstract

In this study, the effect of spheroid formation, as a model of three-dimensional (3D) culture systems, on the cancer stemness of human breast cancer (MCF-7) and human glioma (U87-MG) cell lines was analyzed. We compared the expression of pluripotency genes, the presence of various cancer stem cell populations, migration and proliferation capacities of cells cultured as monolayers or spheroids. MCF-7 cells formed uniform spheroids in vitro, upregulated the expression of stem cell markers both at gene and protein levels and increased their migration capacities when cultured in 3D systems. When a CSC targeting metabolic drug, metformin was used, multiple drug resistance genes (ABC transporters) were downregulated and the anti-cancer activity of 5-fluorouracil was enhanced. In summary, this study proved that the use of 3D culture systems such as spheroids can be used in CSC-related research. Therefore, studies involving 3D culture systems will help scientists to discover new CSC markers, show more realistic drug responses, and better evaluate tumor proliferation and morphology changes.

Keywords

3D cell culturing Spheroids Monolayer Cancer stem cell ABC transporter Metformin 

Notes

Funding

AY acknowledges support by the Scientific and Technological Research Council of Turkey (TUBITAK, Grant Number 113S897).

Compliance with ethical standards

Conflict of interest

The author declares that there is no conflict of interest.

Supplementary material

13205_2018_1412_MOESM1_ESM.docx (264 kb)
Supplementary material 1 (DOCX 263 KB)

References

  1. Ashwell S, Zabludoff S (2008) DNA damage detection and repair pathways—recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Can Res 14(13):4032–4037CrossRefGoogle Scholar
  2. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133(+)and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67(9):4010–4015CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bielecka ZF, Maliszewska-Olejniczak K, Safir IJ, Szczylik C, Czarnecka AM (2016) Three-dimensional cell culture model utilization in cancer stem cell research. Biol Rev Camb Philos Soc 92(3):1505–1520CrossRefPubMedGoogle Scholar
  4. Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G, Pelicci G (2013) CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31(5):857–869CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ, Kearsley JH, Li Y (2013) Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis 4:e875CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen L, Xiao Z, Meng Y, Zhao Y, Han J, Su G, Chen B, Dai J (2012) The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs. Biomaterials 33(5):1437–1444CrossRefPubMedGoogle Scholar
  7. Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124(6):1111–1115CrossRefPubMedGoogle Scholar
  8. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CHM, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66(19):9339–9344CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cody NA, Ouellet V, Manderson EN, Quinn MC, Filali-Mouhim A, Tellis P, Zietarska M, Provencher DM, Mes-Masson AM, Chevrette M (2007) Transfer of chromosome 3 fragments suppresses tumorigenicity of an ovarian cancer cell line monoallelic for chromosome 3p. Oncogene 26(4):618–632CrossRefPubMedGoogle Scholar
  10. David RM, Gooderham NJ (2016) Using 3D MCF-7 mammary spheroids to assess the genotoxicity of mixtures of the food-derived carcinogens benzo[a]pyrene and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Toxicol Res 5(1):312–317CrossRefGoogle Scholar
  11. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284CrossRefPubMedGoogle Scholar
  12. Economopoulou P, Kaklamani VG, Siziopikou K (2012) The role of cancer stem cells in breast cancer initiation and progression: potential cancer stem cell-directed therapies. Oncologist 17(11):1394–1401CrossRefPubMedPubMedCentralGoogle Scholar
  13. Florczyk SJ, Wang K, Jana S, Wood DL, Sytsma SK, Sham JG, Kievit FM, Zhang M (2013) Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Biomaterials 34(38):10143–10150CrossRefPubMedGoogle Scholar
  14. Gong X, Lin C, Cheng J, Su J, Zhao H, Liu T, Wen X, Zhao P (2015) Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing. PLoS One 10(6):e0130348CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15(9):1010–1012CrossRefGoogle Scholar
  16. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69(19):7507–7511CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323CrossRefPubMedGoogle Scholar
  18. Kim TH, Suh DH, Kim M-K, Song YS (2014) Metformin against cancer stem cells through the modulation of energy metabolism: special considerations on ovarian cancer. BioMed Res Int 2014:11Google Scholar
  19. Langan LM, Dodd NJF, Owen SF, Purcell WM, Jackson SK, Jha AN (2016) Direct measurements of oxygen gradients in spheroid culture system using electron parametric resonance oximetry. PLoS One 11(2):e0149492CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lee H, Park HJ, Park C-S, Oh E-T, Choi B-H, Williams B, Lee CK, Song CW (2014) Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined. PLoS One 9(2):e87979CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li C-L, Tian T, Nan K-J, Zhao N, Guo Y-H, Cui J, Wang J, Zhang W-G (2008) Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro. Oncol Rep 20(6):1465–1471PubMedGoogle Scholar
  22. Li Y, Wang M, Zhi P, You J, Gao J-Q (2018) Metformin synergistically suppress tumor growth with doxorubicin and reverse drug resistance by inhibiting the expression and function of P-glycoprotein in MCF7/ADR cells and xenograft models. Oncotarget 9(2):2158–2174PubMedGoogle Scholar
  23. Lv D, Hu Z, Lu L, Lu H, Xu X (2017) Three-dimensional cell culture: a powerful tool in tumor research and drug discovery. Oncology Lett 14(6):6999–7010Google Scholar
  24. Marotta LLC, Polyak K (2009) Cancer stem cells: a model in the making. Curr Opin Genet Dev 19(1):44–50CrossRefPubMedGoogle Scholar
  25. Oskarsson T, Batlle E, Massagué J (2014) Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14(3):306–321CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ramos Peñafiel CO, Olarte Carrillo I, Cerón Maldonado R, Santoyo Sánchez A, Castellanos Sinco HB, Montaño Figueroa E, Queipo García G, Martínez Tovar A (2016) Effect of the addition of metformin on the expression of multidrug-resistance genes (ABCB1, ABCG2) in acute lymphoblastic leukemia: in vitro and in vivo study. Blood 128(22):5142–5142Google Scholar
  27. Rojas-Ríos P, González-Reyes A (2014) Concise review: the plasticity of stem cell niches: a general property behind tissue homeostasis and repair. Stem Cells 32(4):852–859CrossRefPubMedGoogle Scholar
  28. Trumpp A, Wiestler OD (2008) Mechanisms of disease: cancer stem cells—targeting the evil twin. Nat Rev Clin Oncol 5(6):337–347CrossRefGoogle Scholar
  29. Wang D, Guo Y, Li Y, Li W, Zheng X, Xia H, Mao Q (2015) Detection of CD133 expression in U87 glioblastoma cells using a novel anti-CD133 monoclonal antibody. Oncol Lett 9(6):2603–2608CrossRefPubMedPubMedCentralGoogle Scholar
  30. Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R, Bevilacqua A, Tesei A (2016) 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep 6:19103CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biomedical Engineering Department, Engineering FacultyAnkara UniversityAnkaraTurkey
  2. 2.Stem Cell InstituteAnkara UniversityAnkaraTurkey

Personalised recommendations