3 Biotech

, 8:381 | Cite as

De novo transcriptome analysis deciphered polyoxypregnane glycoside biosynthesis pathway in Gymnema sylvestre

  • Kuldeepsingh A. KalariyaEmail author
  • Dipal B. Minipara
  • Ponnuchamy Manivel
Original Article


Gymnema sylvestre is an important medicinal plant containing antidiabetic activity. Through de novo transcriptomic study, the pathways of polyoxypregnane glycosides were explored and candidate genes of these pathways were identified in G. sylvestre. High-quality raw reads were assembled into transcripts which resulted in 193,615 unigenes. These unigenes further decoded 58,274 coding DNA sequences (CDSs). Functional annotation of predicted CDSs was carried out using the protein databases, i.e., NCBI’s non-redundant, Uniprot and Pfam. Eukaryotic orthologous group (KOG) classification and transcription factor analysis has revealed most CDS-enriched categories as “Signal transduction mechanism” and “Basic Helix loop helix” (bHLH) transcription factor family, respectively. A total of 16,569 CDSs were assigned minimum one Gene Ontology (GO) term. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis disclosed 235 CDSs which represented total 27 genes of pregnane glycoside pathways and 19 CDSs represented 10 important enzymes of polyoxypregnane glycoside biosynthesis, i.e., sterol 24-C-methyltransferase, cycloeucalenol cycloisomerase, Δ14-sterol reductase, C-8,7 sterol isomerase, sterol methyltransferase 2, C-5 sterol desaturase, sterol Δ7 reductase, Δ24 sterol reductase, 3β-hydroxysteroid dehydrogenase and progesterone 5β reductase (5βPOR). This transcriptome analysis provided an important resource for future functional genomic studies in G. sylvestre.


Gymnema sylvestre Next generation sequencing Pregnane glycosides RNA sequencing 



We acknowledge the funding through FAP Scheme 2015–16, sanctioned dated 23.09.2016 from GSBTM, Govt. of Gujarat, Gujarat, India, the ICAR-DMAPR, Anand and the ICAR, New Delhi for providing the basic facilities for this research work, all germplasm explorers who collected this germplasm and all curators who maintained this genotype at our research farm.

Author contributions

KK conceived the project, designed the experiment, analyzed the data and drafted the MS. DM analyzed the data and drafted the MS. PM explored the germplasm used, gave overall technical and administrative support in this study.

Compliance with ethical standards

Availability of data and materials

The data generated or analyzed during this study are included in this published article, its supplementary information files, and publicly available repositories. The transcriptome raw data are deposited at NCBI under submission ID: SUB2977090, sample ID: GSLFDGS03 and SRA accession ID: SRR5965322.

Conflict of interest

The authors declare no competing financial interests.


  1. Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytol 194:28–45CrossRefPubMedGoogle Scholar
  2. Anupam B, Malay CH (1994) Hypolipidaemic and antiatherosclerotic effects of oral Gymnema sylvestre R. Br. leaf extract in albino rats fed on a high fat diet. Phytother Res 8:118–120CrossRefGoogle Scholar
  3. Bauer P, Munkert J, Brydziun M, Burda E, Müller-Uri F, Gröger H et al (2010) Highly conserved progesterone 5 beta-reductase genes (P5 beta R) from 5 beta-cardenolide-free and 5 beta-cardenolide-producing angiosperms. Phytochemistry 71:1495–1505CrossRefPubMedGoogle Scholar
  4. Benveniste P (2002) Sterol metabolism. In: Somerville CR, Meyerowitz EM (eds) The arabidopsis book, vol 1. American Society of Plant Biologists, RockvilleGoogle Scholar
  5. Benveniste P (2004) Biosynthesis and accumulation of sterols. Annu Rev Plant Biol 55:429–457CrossRefPubMedGoogle Scholar
  6. Bode HB, Zeggel B, Silakowski B, Wenzel SC, Reichenbach H, Muller R (2003) Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol Microbiol 47:471–481CrossRefPubMedGoogle Scholar
  7. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bouvier-Navé P, Benveniste P (1995) Sterol acyl transferase and steryl ester hydrolase activities in a tobaccomutant which overproduces sterols. Plant Sci 110:11–19CrossRefGoogle Scholar
  9. Campbell M, Hahn FM, Poulter CD, Leustek T (1998) Analysis of the isopentenyl diphosphate isomerase gene family from Arabidopsis thaliana. Plant Mol Biol 36:323–328CrossRefPubMedGoogle Scholar
  10. Conesa A, Gotz S (2007) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genom 2008:1–12Google Scholar
  11. Crowell DN, Huizinga DH (2009) Protein isoprenylation: the fat of the matter. Trends Plant Sci 14:163–170CrossRefPubMedGoogle Scholar
  12. Ernst M, Padua RM, Herl V, Muller-Uri F, Kreis W (2010) Expression of 3βHSD and P5βR, genes respectively coding for ∆5-3β-hydroxysteroid dehydrogenase and progesterone 5β-reductase, in leaves and cell cultures of Digitalis lanata EHRH. Planta Med 76(9):923–927CrossRefPubMedGoogle Scholar
  13. Fu L, Niu B, Zhuy Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152CrossRefPubMedPubMedCentralGoogle Scholar
  14. Furuya T, Kawaguchi K, Hirotani M (1971) Biotransformation of progesterone and pregnenolone by plant suspension cultures. Phytochemistry 10:1013–1017CrossRefGoogle Scholar
  15. Gershenzon J, Kreis W (1999) Biochemistry of plant secondary metabolism: annual plant reviews, vol 2. Sheffield Academic Press, SheffieldGoogle Scholar
  16. Guo AY, Chen X, Gap G, Zhang QH, Liu XC, Zhong YF, GU X, He K, Luo J (2008) PlantTFDB: a comprehensive plant transcription factor database. Nucleic Acids Res 36:966–969CrossRefGoogle Scholar
  17. Gupta SS, Seth CB, Variyar MC (1962) Experimental studies on pituitary-diabetes. Part I. Inhibitory effect of a few Ayurvedic antidiabetic remedies on anterior pituitary extract induced hyperglycemia in albino rats. J Med Res 50:73–81Google Scholar
  18. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Le Duc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat Protoc 8(8):1494–1512CrossRefPubMedGoogle Scholar
  19. Heintz R, Benveniste P (1974) Enzymatic cleavage of the 9,19-cyclopropane ring of cyclopropyl sterol in bramble tissue cultures. J Biol Chem 249:4267–4274PubMedGoogle Scholar
  20. Husselstein T, Gachotte D, Desprez T, Bard M, Benveniste P (1996) Transformation of Saccharomyces cerevisiae with a cDNA encoding a sterol methyltransferase from Arabidopsis thaliana results in the synthesis of 24-ethyl sterols. FEBS Lett 381:87–92CrossRefPubMedGoogle Scholar
  21. Iino M, Nomura T, Tamaki Y, Yamada Y, Yoneyama K, Takeuchi Y et al (2007) Progesterone: its occurrence in plants and involvement in plant growth. Phytochemistry 68:1664–1673CrossRefPubMedGoogle Scholar
  22. Kalariya KA, Minipara D (2018) An overview of triterpenoid biosynthesis in plants and structural depiction of gymnemasides and gymnemosides from Gymnema sylvestre. J Plant Physiol Pathol 5:6. CrossRefGoogle Scholar
  23. Komarnytsky S, Esposito D, Rathinasabapathy T, Poulev A, Raskin I (2013) Effects of pregnane glycosides on food intake depend on stimulation of the melanocortin pathway and bdnf in an animal model. J Agric Food Chem 61(8):1841–1849CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kreis W, Müller-Uri F (2013) Cardenolide aglycone formation in Digitalis, isoprenoid synthesis in plants and microorganisms. Springer, New York, pp 425–438Google Scholar
  25. Luckner M, Wichtl M (2000) Digitalis. WVG, Stuttgart. ISBN 3804717055Google Scholar
  26. Pandey A, Swarnkar V, Pandey T, Srivastava P (2016) Transcriptome and Metabolite analysis reveal candidate genes of the cardiac glycoside biosynthetic pathway from Calotropis procera. Sci Rep 6(34464):1–14Google Scholar
  27. Ramstad E, Beal JL (1960) Mevalonic acid as a precursor in the biogenesis of digitoxigenin. J Pharm Pharmacol 12:552–556CrossRefPubMedGoogle Scholar
  28. Schaeffer A, Bouvier-Nav´e P, Benveniste P, Schaller H (2000) Plant sterol-C24-methyl transferases: different profiles of tobacco transformed with SMT1 or SMT2. Lipids 35(3):263–269CrossRefPubMedGoogle Scholar
  29. Sun G, Dai Q, Zhang H, Li Z, Du Z (2016) New sweet-tasting C21-pregnane glycosides from pericarps of Myriopteron extensum. J Agric Food Chem 64(49):9381–9389CrossRefPubMedGoogle Scholar
  30. Thorn A, Egerer-Sieber C, J¨ager CM, Herl V, Muller-Uri F, Kreis W, Muller YA (2008) The crystal structure of progesterone 5-reductase from Digitalis lanata defines a novel class of short chain dehydrogenases/reductases. J Biol Chem 283:17260–17269CrossRefPubMedGoogle Scholar
  31. Wu B, Li Y, Yan H, Ma Y, Luo H, Yuan L, Chen S, Lu S (2012) Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea. BMC Genom 13:15CrossRefGoogle Scholar
  32. Xu R, Yang Y, Zhang Y, Ren F, Xu J, Yu N, Zhao Y (2015) New pregnane glycosides from Gymnema sylvestre. Molecules 20:3050–3066CrossRefPubMedGoogle Scholar
  33. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:293–297CrossRefGoogle Scholar
  34. Yoshikawa K, Matsuchika K, Takahashi K, Tanaka M, Arihara S, Chang HC, Wang JD (1999) Pregnane glycosides, gymnepregosides G–Q from the roots of Gymnema alternifolium. Chem Pharm Bull (Tokyo) 47(6):798–804CrossRefGoogle Scholar
  35. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:1–12CrossRefGoogle Scholar
  36. Zheng K, Zhang G, Jiang N, Yang S, Li C, Meng Z, Guo Q, Long G (2014) Analysis of the transcriptome of Marsdenia tenacissima discovers putative polyoxypregnane glycoside biosynthetic genes and genetic markers. Genomics 104:186–193CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kuldeepsingh A. Kalariya
    • 1
    Email author
  • Dipal B. Minipara
    • 1
  • Ponnuchamy Manivel
    • 1
  1. 1.ICAR-Directorate of Medicinal and Aromatic Plants ResearchAnandIndia

Personalised recommendations