Optical and magnetic properties of iron-enriched Fe/FexOy@Au magnetoplasmonic nanostructures

  • E. Kheradmand
  • R. PoursalehiEmail author
  • H. Delavari
Original Article


Synthesis and utilization of nanostructures exhibiting both magnetic and plasmonic characteristics have been considered significantly important. In this research, 12-nm iron nanoparticles were first synthesized by the electric arc discharge procedure. Gold nanoparticles were then synthesized via the chemical reduction of gold salt which were used to cover magnetic nanoparticles uniformly. X-ray powder diffraction, scanning and transmission electron microscopies, and UV–Vis spectroscopy were implemented to determine available phases, particles sizes, the morphology of nanoparticles and optical characteristics. Surface plasmon resonance behavior appeared at \(\lambda =548\) nm for iron-based@gold nanoparticles. Vibrating sample magnetometry of iron nanoparticles and iron-based@gold nanoparticles show a superparamagnetic behavior at room temperature and resulted in saturation magnetization values of 80.5 emu/g and 25.7 emu/g, respectively. The results of the facile synthesis will be beneficial for a range of applications in biomedicine including magnetic resonance imaging contrast enhancement as well as magnetic and optical photothermal therapies.


Iron-based-gold nanostructure Electric arc discharge Optical properties Magnetic characteristics 


  1. Ahmadi N et al (2019) Effect of gold plasmonic shell on nonlinear optical characteristics and structure of iron based nanoparticles. Appl Surf Sci 479:114CrossRefGoogle Scholar
  2. Alonso-Cristobal P et al (2015) Efficient synthesis of core@ shell Fe3O4@ Au nanoparticles. Mater Res Express 2(7):075002CrossRefGoogle Scholar
  3. Boken J et al (2017) Plasmonic nanoparticles and their analytical applications: a review. Appl Spectrosc Rev 52(9):774–820CrossRefGoogle Scholar
  4. Brullot W, Valev VK, Verbiest T (2012) Magnetic–plasmonic nanoparticles for the life sciences: calculated optical properties of hybrid structures. Nanomed Nanotechnol Biol Med 8(5):559–568CrossRefGoogle Scholar
  5. Butler IB, Schoonen MAA, Rickard DT (1994) Removal of dissolved oxygen from water: a comparison of four common techniques. Talanta 41(2):211–215CrossRefGoogle Scholar
  6. Carpenter EE, Sangregorio C, O'Connor CJ (1999) Effects of shell thickness on blocking temperature of nanocomposites of metal particles with gold shells. IEEE Trans Magn 35(5):3496–3498CrossRefGoogle Scholar
  7. Chen D-X et al (2009) Size determination of superparamagnetic nanoparticles from magnetization curve. J Appl Phys 105(8):083924CrossRefGoogle Scholar
  8. Cho S-J et al (2006) Gold-coated iron nanoparticles: a novel magnetic resonance agent for T1 and T2 weighted imaging. Nanotechnology 17(3):640CrossRefGoogle Scholar
  9. Chung HJ et al (2011) Facile synthetic route for surface-functionalized magnetic nanoparticles: cell labeling and magnetic resonance imaging studies. ACS Nano 5(6):4329–4336CrossRefGoogle Scholar
  10. Coelho BCP et al (2017) Maghemite–gold core–shell nanostructures (γ-Fe 2 O 3@ Au) surface-functionalized with aluminium phthalocyanine for multi-task imaging and therapy. RSC Adv 7(19):11223–11232CrossRefGoogle Scholar
  11. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, HobokenCrossRefGoogle Scholar
  12. Creighton JA, Eadon DG (1991) Ultraviolet–visible absorption spectra of the colloidal metallic elements. J Chem Soc Faraday Trans 87(24):3881–3891CrossRefGoogle Scholar
  13. Cullity BD, Graham CD (2011) Introduction to magnetic materials. Wiley, ‎Hoboken.Google Scholar
  14. Davey WP (1925) Precision measurements of the lattice constants of twelve common metals. Phys Rev 25(6):753CrossRefGoogle Scholar
  15. de Aberasturi DJ, Serrano-Montes AB, Liz-Marzán LM (2015) Modern applications of plasmonic nanoparticles: from energy to health. Adv Opt Mater 3(5):602–617CrossRefGoogle Scholar
  16. Fan Z et al (2012) Multifunctional plasmonic shell–magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACS Nano 6(2):1065–1073CrossRefGoogle Scholar
  17. Farajimotlagh M, Poursalehi R, Aliofkhazraei M (2017) Synthesis mechanisms, optical and structural properties of η-Al2O3 based nanoparticles prepared by DC arc discharge in environmentally friendly liquids. Ceram Int 43(10):7717–7723CrossRefGoogle Scholar
  18. Fjellvåg H et al (1996) On the crystallographic and magnetic structures of nearly stoichiometric iron monoxide. J Solid State Chem 124(1):52–57CrossRefGoogle Scholar
  19. Fleet ME (1981) The structure of magnetite. Acta Crystallogr Sect B: Struct Crystallogr Cryst Chem 37(4):917–920CrossRefGoogle Scholar
  20. Hirsch LR et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci 100(23):13549–13554CrossRefGoogle Scholar
  21. Iglesias-Silva E et al (2010) Synthesis of gold-coated iron oxide nanoparticles. J Non-Cryst Solids 356(25–27):1233–1235CrossRefGoogle Scholar
  22. Jafari T, Simchi A, Khakpash N (2010) Synthesis and cytotoxicity assessment of superparamagnetic iron–gold core–shell nanoparticles coated with polyglycerol. J Colloid Interface Sci 345(1):64–71CrossRefGoogle Scholar
  23. Jette ER, Foote F (1933) An X-ray study of the Wüstite (FeO) solid solutions. J Chem Phys 1(1):29–36CrossRefGoogle Scholar
  24. Kayal S, Ramanujan RV (2010) Anti-cancer drug loaded iron–gold core–shell nanoparticles (Fe@ Au) for magnetic drug targeting. J Nanosci Nanotechnol 10(9):5527–5539CrossRefGoogle Scholar
  25. Kheradmand E, Delavari H, Poursalehi R (2015) The effect of dissolved oxygen in arc medium on crystal structure and optical properties of iron based nanoparticles prepared via DC arc discharge in water. Proc Mater Sci 11:695–699CrossRefGoogle Scholar
  26. Khezri SH, Yazdani A, Khordad R (2012) Pure iron nanoparticles prepared by electric arc discharge method in ethylene glycol. Eur Phys J Appl Phys 59(3).Google Scholar
  27. Kim HJ et al (2015) Drug-loaded gold/iron/gold plasmonic nanoparticles for magnetic targeted chemo-photothermal treatment of rheumatoid arthritis. Biomaterials 61:95–102CrossRefGoogle Scholar
  28. Kwizera EA et al (2016) Size-and shape-controlled synthesis and properties of magnetic–plasmonic core–shell nanoparticles. J Phys Chem C 120(19):10530–10546CrossRefGoogle Scholar
  29. Kwizera EA et al (2017) Synthesis and properties of magnetic-optical core–shell nanoparticles. RSC Adv 7(28):17137–17153CrossRefGoogle Scholar
  30. Larson TA et al (2007) Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 18(32):325101CrossRefGoogle Scholar
  31. Leostean C et al (2011) Comparative study of core–shell iron/iron oxide gold covered magnetic nanoparticles obtained in different conditions. J Nanopart Res 13(11):6181–6192CrossRefGoogle Scholar
  32. Levin CS et al (2009) Magnetic–plasmonic core−shell nanoparticles. ACS Nano 3(6):1379–1388CrossRefGoogle Scholar
  33. Li W et al (2016) Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications. Sci Rep 6:23140CrossRefGoogle Scholar
  34. Lin J et al (2001) Gold-coated iron (Fe@ Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159(1):26–31CrossRefGoogle Scholar
  35. Miola M et al (2017) Reductant-free synthesis of magnetoplasmonic iron oxide-gold nanoparticles. Ceram Int 43(17):15258–15265CrossRefGoogle Scholar
  36. Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides–a review. International Journal of Engineering, Science and Technology 2(8).Google Scholar
  37. Montazerabadi, Ali Reza, et al (2015) Development of gold-coated magnetic nanoparticles as a potential mri contrast agent. NANO:1550048.Google Scholar
  38. Morales M et al (1999) Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem Mater 11(11):3058–3064CrossRefGoogle Scholar
  39. Nguyen T, Mammeri F, Ammar S (2018) Iron oxide and gold based magneto-plasmonic nanostructures for medical applications: a review. Nanomaterials 8(3):149CrossRefGoogle Scholar
  40. O'connor, Charles J, Everett E Carpenter, Jessica Ann Sims (2004) Sequential synthesis of core-shell nanoparticles using reverse micelles, Google Patents.Google Scholar
  41. Oldenburg SJ et al (1998) Nanoengineering of optical resonances. Chem Phys Lett 288(2–4):243–247CrossRefGoogle Scholar
  42. Owen EA, Williams GI (1954) A low-temperature X-ray camera. J Sci Instrum 31(2):49CrossRefGoogle Scholar
  43. Park H-Y et al (2007) Fabrication of magnetic core@ shell Fe oxide@ Au nanoparticles for interfacial bioactivity and bio-separation. Langmuir 23(17):9050–9056CrossRefGoogle Scholar
  44. Park J-H et al (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20(9):1630–1635CrossRefGoogle Scholar
  45. Peng S et al (2006) Synthesis and stabilization of monodisperse Fe nanoparticles. J Am Chem Soc 128(33):10676–10677CrossRefGoogle Scholar
  46. Pichon BP et al (2011) Microstructural and magnetic investigations of Wüstite–spinel core–shell cubic-shaped nanoparticles. Chem Mater 23(11):2886–2900CrossRefGoogle Scholar
  47. Ross CA (2001) Patterned magnetic recording media. Annu Rev Mater Res 31(1):203–235CrossRefGoogle Scholar
  48. Sabale S et al (2017) Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold. Biomater Sci 5(11):2212–2225CrossRefGoogle Scholar
  49. Salehizadeh H et al (2012) Synthesis and characterization of core–shell Fe3O4–gold–chitosan nanostructure. J Nanobiotechnol 10(1):3CrossRefGoogle Scholar
  50. Simmons GW, Dwyer DJ (1975) A LEED-AES study of the initial stages of oxidation of Fe (001). Surf Sci 48(2):373–392CrossRefGoogle Scholar
  51. Singh P, Mott DM, Maenosono S (2013) Gold/Wüstite core–shell nanoparticles: suppression of iron oxidation through the electron-transfer phenomenon. ChemPhysChem 14(14):3278–3283CrossRefGoogle Scholar
  52. Sodipo BK, Aziz AA, Mustapa M (2015) Facile synthesis and characteristics of gold coated superparamagnetic iron oxide nanoparticles via sonication. Int J Nanoelectron Mater 8:1–6Google Scholar
  53. Song Y et al (2011) Synthesis of well-dispersed aqueous-phase magnetite nanoparticles and their metabolism as an MRI contrast agent for the reticuloendothelial system. Eur J Inorg Chem 2011(22):3303–3313CrossRefGoogle Scholar
  54. Sood A et al (2016) Ascorbic acid-mediated synthesis and characterisation of iron oxide/gold core–shell nanoparticles. J Exp Nanosci 11(5):370–382CrossRefGoogle Scholar
  55. Tamer U et al (2013) Gold-coated iron composite nanospheres targeted the detection of Escherichia coli. Int J Mol Sci 14(3):6223–6240CrossRefGoogle Scholar
  56. Trang NTT et al (2013) Magnetic–plasmonic FePt@ Ag core–shell nanoparticles and their magnetic and SERS properties. Plasmonics 8(2):1177–1184CrossRefGoogle Scholar
  57. Wang CM et al (2005) Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature. J Appl Phys 98(9):094308CrossRefGoogle Scholar
  58. Wang L et al (2005) Monodispersed core−shell Fe3O4@ Au nanoparticles. J Phys Chem B 109(46):21593–21601CrossRefGoogle Scholar
  59. Wang L et al (2011) Plasmonics and enhanced magneto-optics in core−shell Co−Ag nanoparticles. Nano Lett 11(3):1237–1240CrossRefGoogle Scholar
  60. Westcott SL et al (1998) Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir 14(19):5396–5401CrossRefGoogle Scholar
  61. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397CrossRefGoogle Scholar
  62. Wu Y et al (2010) A facile approach to Fe3O4@ Au nanoparticles with magnetic recyclable catalytic properties. Mater Res Bull 45(4):513–517CrossRefGoogle Scholar
  63. Wu Y-N et al (2013) The anticancer properties of iron core–gold shell nanoparticles in colorectal cancer cells. Int J Nanomed 8:3321CrossRefGoogle Scholar
  64. Yang Di et al (2015) Precisely size-tunable magnetic/plasmonic core/shell nanoparticles with controlled optical properties. Angew Chem Int Ed 54(41):12091–12096CrossRefGoogle Scholar
  65. Yoo JW, Hathcock D, El-Sayed MA (2002) Characterization of Pt nanoparticles encapsulated in Al2O3 and their catalytic efficiency in propene hydrogenation. J Phys Chem A 106(10):2049–2054CrossRefGoogle Scholar
  66. Yoon, Gyu Jin, et al. (2018) Synthesis of Iron Oxide/Gold Composite Nanoparticles Using Polyethyleneimine as a Polymeric Active Stabilizer for Development of a Dual Imaging Probe. Nanomaterials 8(5).CrossRefGoogle Scholar
  67. Zhang J, Guyot F (1999) Thermal equation of state of iron and Fe0.91 Si0.09. Physics and Chemistry of Minerals 26(3), 206–211.CrossRefGoogle Scholar
  68. Zhang J et al (2006) Laser-assisted synthesis of superparamagnetic Fe@ Au core−shell nanoparticles. J Phys Chem B 110(14):7122–7128CrossRefGoogle Scholar
  69. Zhou WL et al (2001) Nanostructures of gold coated iron core–shell nanoparticles and the nanobands assembled under magnetic field. Eur Phys J D-Atom Mol Opt Plasma Phys 16(1):289–292Google Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2020

Authors and Affiliations

  1. 1.Department of Materials EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations