Research on quantum efficiency of exponential-doping GaN monolayer reflection-mode photocathode with ultra-thin emission layer

  • Jian Tian
  • Lei LiuEmail author
  • Feifei Lu
Original Article


In this paper, we present an exponential-doping GaN monolayer reflection-mode photocathode whose emission layer is composed of few GaN monolayers with different doping concentrations. To understand its optoelectronic emission performance, the quantum efficiency formula of exponential-doping GaN photocathode with ultra-thin monolayers as the emission layer is obtained. Then, we simulate the impact of recombination velocity of AlGaN/GaN ML interface, recombination velocity of GaN ML/GaN ML interface, thickness of emission layer with GaN monolayers, surface escape probability and surface reflectivity on quantum efficiency based on the formula, respectively. The results imply that interface recombination velocity made a significant contribution to quantum efficiency of photocathode. When interface recombination velocity in AlGaN/GaN ML and GaN ML/GaN ML is appropriate, they will promote electrons’ escape to the cathode surface and achieve higher quantum efficiency finally. Through our simulation results, a helpful reference can be given for design of exponential-doping GaN monolayer photocathode.


Exponential doping Quantum efficiency Ultra-thin emission layer GaN monolayer 



This work is supported by Qing Lan Project of Jiangsu Province-China (Grant No. 2017-AD41779), the Fundamental Research Funds for the Central Universities-China (Grant No. 30916011206) and the Six Talent Peaks Project in Jiangsu Province-China (Grant No. 2015-XCL-008).


  1. Al Balushi ZY, Wang K, Ghosh RK, Vilá RA, Eichfeld SM, Caldwell JD, Qin X, Lin YC, DeSario PA, Stone G, Subramanian S, Paul DF, Wallace RM, Datta S, Redwing JM, Robinson JA (2016) Two-dimensional gallium nitride realized via graphene encapsulation. Nat Mater 15:1166–1171CrossRefGoogle Scholar
  2. Allen GA (1971) The performance of negative electron affinity photocathode. J Phys D Appl Phys 4(2):308–317CrossRefGoogle Scholar
  3. Chen X, Zhang Y, Chang B, Zhao J, Jin M, Hao G, Xu Y (2013) Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer. Opt Commun 287:35–39CrossRefGoogle Scholar
  4. Chen X, Jin M, Xu Y, Chang B, Feng S, Cheng H (2015) Quantum efficiency study of the sensitive to blue-green light transmission-mode GaAlAs photocathode. Opt Commun 335:42–47CrossRefGoogle Scholar
  5. Chen Y, Liu K, Lv TR, Wei B, Zhang T, Zeng M, Wang Z, Fu L (2018) Grwoth of 2D GaN single crystals on liquid metals. J Am Chem Soc 140(48):16392–16395CrossRefGoogle Scholar
  6. Cui J, Zhang Z, Jiang H, Liu D, Zou L, Guo X, Lu Y, Parkin IP, Guo D (2019a) Ultrahigh Recovery of Fracture Strength on Mismatched Fractured Amorphous Surfaces of Silicon Carbide. ACS Nano 13(7):7483–7492CrossRefGoogle Scholar
  7. Cui J, Zhang Z, Liu D, Zhang D, Hu W, Zou L, Lu Y, Zhang C, Lu H, Tang C, Jiang N, Parkin IP, Guo D (2019b) Unprecedented piezoresistance coefficient in strained silicon carbide. Nano Lett 19(9):6569–6576CrossRefGoogle Scholar
  8. Feng C, Zhang Y, Qian Y, Wang Z, Liu J, Chang B, Feng S, Jiao G (2018) High-efficiency AlxGa1-xAs/GaAs cathode for photo-enhanced thermionic emission solar energy converters. Opt Commun 413:1–7CrossRefGoogle Scholar
  9. Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee KS, Colombo L (2014) Electronics based on two-dimensional materials. Nat Nanotechnol 9:768–779CrossRefGoogle Scholar
  10. Hao G, Zhang Y, Jin M, Feng C, Chen X, Chang B (2015) The effect of surface cleaning on quantum efficiency in AlGaN photocathode. Appl Surf Sci 324:590–593CrossRefGoogle Scholar
  11. Hao G, Zhang J, Zhang Y, Qiu Y, Qian Y (2017) Performance stability of reflection-mode AlGaN photocathode under different preparation methods. In: SPIE UV and higher energy photonics: from materials to applications, 10351:1035107Google Scholar
  12. Jin M, Chen X, Hao G, Chang B, Cheng H (2015) Research on quantum efficiency for reflection-mode InGaAs photocathodes with thin emission layer. Appl Optics 54(28):8332–8338CrossRefGoogle Scholar
  13. Liu Y, Moll J, Spicer WE (1970) Quantum yield of GaAs semitransparent photocathodes. Appl Phys Lett 17(2):60–62CrossRefGoogle Scholar
  14. Liu L, Diao Y, Xia S (2019) High-performance GaAs nanowire cathode for photon-enhanced thermionic emission solar converters. J Mater Sci 54(7):5605–5614CrossRefGoogle Scholar
  15. Muth JF, Brown JD, Johnson MAL, Yu Z, Kolbas RM, Cook JW, Schetzina JF (1999) Absorption coefficient and refractive index of GaN, AlN and AlGaN alloys. MRS Internet J Nitride Semicond Res 4:502–507CrossRefGoogle Scholar
  16. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  17. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRefGoogle Scholar
  18. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150CrossRefGoogle Scholar
  19. Şahin H, Cahangirov S, Topsakai M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys Rev B 80(15):155453CrossRefGoogle Scholar
  20. Sanders N, Bayerl D, Shi G, Mengle KA, Kioupakis E (2017) Electronic and optical properties of two-dimensional GaN from first principles. Nano Lett 17(12):7345–7349CrossRefGoogle Scholar
  21. Spicer WE, Herrera-Gomez A (1993) Modern theory and applications of photocathodes. SPIE Photodetect Power Meters 2022:18–33CrossRefGoogle Scholar
  22. Tian J, Liu L, Xia S, Diao Y, Lu F (2020) Research on quantum efficiency of GaN monolayer reflection-mode photocathode with atomically ultra-thin emission layer. Opt Commun 454:124CrossRefGoogle Scholar
  23. Wang B, Zhang Z, Chang K, Cui J, Rosenkranz A, Yu J, Lin CT, Chen G, Zang K, Luo J, Jiang N, Guo D (2017) New deformation-induced nanostructure in silicon. Nano Lett 18(7):4611–4617CrossRefGoogle Scholar
  24. Xia S, Liu L, Diao Y, Feng S (2017a) Research on quantum efficiency and photoemission characteristics of exponential-doping GaN nanowire photocathode. J Mater Sci 52(21):12795–12805CrossRefGoogle Scholar
  25. Xia S, Liu L, Diao Y, Kong Y (2017b) Research on quantum efficiency of GaN wire photocathode. Opt Mater 64:187–192CrossRefGoogle Scholar
  26. Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9(10):9451–9469CrossRefGoogle Scholar
  27. Zhang Y, Niu J, Zhao J, Zou J, Chang B, Feng S, Cheng H (2010) Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes. J Appl Phys 108(9):093108CrossRefGoogle Scholar
  28. Zhang Y, Chang B, Niu J, Zhao J, Zou J, Feng S, Cheng H (2011) High-efficiency graded band-gap AlxGa1-xAs/GaAs photocathodes grown by metal organic chemical vapor deposition. Appl Phys Lett 99(10):101104CrossRefGoogle Scholar
  29. Zhang Z, Huo F, Zhang X, Guo D (2012a) Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scr Mater 67(7–8):657–660CrossRefGoogle Scholar
  30. Zhang Z, Song Y, Xu C, Guo D (2012b) A novel model for undeformed nanometer chips of soft-brittle HgCdTe films induced by ultrafine diamond grits. Scr Mater 67(2):197–200CrossRefGoogle Scholar
  31. Zhang Z, Huo Y, Guo D (2013) A model for nanogrinding based on direct evidence of ground chips of silicon wafers. Sci China Technol Sc 56(9):2099–2108CrossRefGoogle Scholar
  32. Zhang Z, Wang B, Kang R, Zhang B, Guo D (2015) Changes in surface layer of silicon wafers from diamond scratching. CIRP Ann-Manuf Techn 64(1):349–352CrossRefGoogle Scholar
  33. Zhang Z, Wang B, Zhou P, Kang R, Zhang B, Guo D (2016a) A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers. Sci Rep 6:26891CrossRefGoogle Scholar
  34. Zhang Z, Wang B, Zhou P, Guo D, Kang R, Zhang B (2016b) A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors. Sci Rep 6:22466CrossRefGoogle Scholar
  35. Zhang Z, Cui J, Wang B, Wang Z, Kang R, Guo D (2017) A novel approach of mechanical chemical grinding. J Alloy Compd 726:514–524CrossRefGoogle Scholar
  36. Zhang X, Lai Z, Ma Q, Zhang H (2018a) Novel structured transition metal dichalcogenide nanosheets. Chem Soc Rev 47(9):3301–3338CrossRefGoogle Scholar
  37. Zhang Z, Shi Z, Du Y, Yu Z, Guo L, Guo D (2018b) A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry. Appl Surf Sci 427:409–415CrossRefGoogle Scholar
  38. Zhang Z, Cui J, Zhang J, Liu D, Yu Z, Guo D (2019) Environment friendly chemical mechanical polishing of copper. Appl Surf Sci 467–468:5–11CrossRefGoogle Scholar
  39. Zou J, Chang B (2006) Gradient doping negative electron affinity GaAs photocathodes. Opt Eng 45(5):054001CrossRefGoogle Scholar
  40. Zou J, Chang B, Yang Z (2007) Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes. Acta Phys Sin 56(5):2992–2997Google Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Department of Optoelectronic Technology, School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations