Advertisement

Effect of thickness for nanotwins on the mechanical properties of a Hastelloy

  • Hongxiu ZhouEmail author
  • Miao Guo
  • Lu Wang
  • Jiaxuan Zhao
Original Article
  • 17 Downloads

Abstract

The processes of nanoindentation on Hastelloy alloy with nanoscale twin boundary (TB) are calculated by molecular dynamics (MD). The effect of nanoscale TB’s thickness on the mechanical properties are investigated. The results show that the thickness of nanoscale TBs has obvious influence on the properties of Hastelloy alloy. The TBs obviously play the role of obstacle when the crystal lattice was destroyed by the force of indenter. Although the nanoscale twin boundaries can resist the movement to a certain extent, it does not mean that the thicker nanoscale TBs make the properties better. In these simulations, the Hall–Petch effect and the reverse Hall–Petch effect are observed, and the critical value of thickness is 25.493 Å.

Keywords

MD simulation Young’s modulus FCC alloy Nanoscale TBs Twin thickness 

Notes

Acknowledgements

The authors acknowledge for the financial support from the Fundamental Research for the Central Universities (DUT16QY46).

References

  1. Chen M, Ma E, Hemker KJ, Sheng H, Wang Y, Cheng X (2003) Deformation twinning in nanocrystalline aluminum. Science 300(5623):1275–1277CrossRefGoogle Scholar
  2. Chen K, Wu W, Liao C, Chen L, Tu K (2008) Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 321(5892):1066–1069CrossRefGoogle Scholar
  3. Cui J, Zhang Z, Jiang H et al (2019a) Ultrahigh recovery of fracture strength on mismatched fractured amorphous surfaces of silicon carbide. ACS Nano 13(7):7483–7492CrossRefGoogle Scholar
  4. Cui J, Zhang Z, Liu D et al (2019b) Unprecedented piezoresistance coefficient in strained silicon carbide. Nano Lett 19(9):6569–6576CrossRefGoogle Scholar
  5. Edalati K, Toh S, Furuta T, Kuramoto S, Watanabe M, Horita Z (2012) Development of ultrahigh strength and high ductility in nanostructured iron alloys with lattice softening and nanotwins. Scr Mater 67(5):511–514CrossRefGoogle Scholar
  6. Gandhi VCS, Ramesh S, Kumaravelan R (2012) Evaluation of the contact parameters of a structural rigid sphere and a deformable flat contact model by considering the strain hardening effect. J Eng Technol 2(2):97CrossRefGoogle Scholar
  7. Kobler A, Beuth T, Klöffel T, Prang R, Moosmann M, Scherer T, Walheim S, Hahn H, Kübel C, Meyer B (2015) Nanotwinned silver nanowires: structure and mechanical properties. Acta Mater 92(15):299–308CrossRefGoogle Scholar
  8. Lu L, Shen Y, Chen X, Qian L, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304(5669):422–426CrossRefGoogle Scholar
  9. Lu L, Schwaige R, Shan Z, Dao M, Lu K, Suresh S (2005) Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater 53(7):2169–2179CrossRefGoogle Scholar
  10. Lu K, Lu L, Suresh S (2009a) Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324(5925):349–352CrossRefGoogle Scholar
  11. Lu L, Chen X, Huang X, Lu K (2009b) Revealing the maximum strength in nanotwinned copper. Science 323(5914):607–610CrossRefGoogle Scholar
  12. Luo X, Zhu X, Zhang G (2014) Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat Commun 5(5):3021CrossRefGoogle Scholar
  13. Shaw LL, Tian J, Ortiz AL, Dai K, Villegas JC, Liaw PK, Ren R, Klarstrom DL (2010) A direct comparison in the fatigue resistance enhanced by surface severe plastic deformation and shot peening in a C-2000 superalloy. Mater Sci Eng A 527(4–5):986–994CrossRefGoogle Scholar
  14. Wang B, Zhang Z, Cui J, Jiang N (2017) In situ TEM study of interaction between dislocations and a single nanotwin under nanoindentation. ACS Appl Mater Inter 9:29451–29456CrossRefGoogle Scholar
  15. Wang B, Zhang Z, Chang K et al (2018) New deformation-induced nanostructure in silicon. Nano Lett 18(7):4611–4617CrossRefGoogle Scholar
  16. Wu Y, Adams GG (2009) Plastic yield conditions for adhesive contacts between a rigid sphere and an elastic half-space. J Tribol 131(1):011403–011409CrossRefGoogle Scholar
  17. Zhang Y, Tao NR, Lu K (2008) Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles. Acta Mater 56(11):2429–2440CrossRefGoogle Scholar
  18. Zhang Z, Song Y, Xu C et al (2012a) A novel model for undeformed nanometer chips of soft-brittle HgCdTe films induced by ultrafine diamond grits. Scripta Mater 67(2):197–200CrossRefGoogle Scholar
  19. Zhang Z, Huo F, Zhang X et al (2012b) Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scripta Mater 67(7–8):657–660CrossRefGoogle Scholar
  20. Zhang Z, Huo Y, Huo F et al (2013a) Ultrahigh hardness and synergistic mechanism of a nanotwinned structure of cadmium zinc telluride. Scripta Mater 68(9):747–750CrossRefGoogle Scholar
  21. Zhang Z, Li F, Ma G et al (2013b) Ultrahigh hardness and improved ductility for nanotwinned mercury cadmium telluride. Scripta Mater 69(3):231–234CrossRefGoogle Scholar
  22. Zhang Z, Bo W, Zhang X (2014) A maximum in the hardness of nanotwinned cadmium telluride. Scr Mater 72–73(2):39–42CrossRefGoogle Scholar
  23. Zhang Z, Wang B, Kang R et al (2015a) Changes in surface layer of silicon wafers from diamond scratching. CIRP Ann Manuf Technol 64(1):349–352CrossRefGoogle Scholar
  24. Zhang Z, Guo D, Wang B et al (2015b) A novel approach of high speed scratching on silicon wafers at nanoscale depths of cut. Sci Rep 5:16395CrossRefGoogle Scholar
  25. Zhang Z, Huang S, Chen L, Wang B, Wen B, Zhang B, Guo D (2017) Ultrahigh hardness on a face-centered cubic metal. Appl Surf Sci 416:891–900CrossRefGoogle Scholar
  26. Zhu T, Li J, Samanta A, Kim HG, Subra S (2007) Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc Natl Acad Sci USA 104(9):3031–3036CrossRefGoogle Scholar
  27. Zhu Y, Liao X, Wu X (2012) Deformation twinning in nanocrystalline materials. Prog Mater Sci 57(1):1–62CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations