Tremendously efficient Ag–ZnO–Zn(OH)2 nanosheets for nitrobenzene–aniline transformation via visible light irradiation

  • N. Y. Tashkandi
  • R. M. Mohamed
  • A. BaoumEmail author
Original Article


Preparation of ZnO (Z) and ZnO/Zn(OH)2 (Z/ZH) specimens was carried out practicing a hydrothermal method. Z/ZH specimens were furnished by distinctive mass% of silver (1.0, 3.0, and 5.0 mass%) utilizing photoassisted deposition regime and the attained decorated specimens were designated as (Ag1-Z/ZH, Ag3-Z/ZH, and Ag5-Z/ZH, respectively). Band-gap energy of Z makes it absorb in ultraviolet region whiles, Z/ZH and Ag-Z/ZH specimens possess band gaps that permit them to absorb in visible region. Modifying of Z/ZH specimens by Ag diminishes band-gap magnitude from 3.30 to 2.82 eV and, at the same time, reduces the speed by which electrons and holes may recombine. The photocatalytic actions of Z, Z/ZH, and Ag-Z/ZH were figured out beneath Vis light via nitrobenzene–aniline transformation. The complete and successful transformation could be achieved utilizing Ag3-Z/ZH photocatalyst with the charging of 1.2 g/l photocatalyst after 0.5 h from the beginning of the photocatalytic reaction. In addition, it was found that Ag3-Z/ZH photocatalyst could be reused five times conserving its stability.


Z/ZH Silver decoration Improved photocatalysis Aniline preparation Visible light 



This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia under grant no. G: 109-247-40. The authors, therefore, acknowledge with thanks DSR for technical and financial support.


  1. Anandan S, Vinu A, SheejaLovely KLP, Gokulakrishnan N, Srinivasu P, Mori T, Murugesan V, Sivamurugan V, Ariga K (2007) Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J Mol Catal A Chem 266:149–157CrossRefGoogle Scholar
  2. Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photo-process performance. J Photochem Photobiol C 7:127–144CrossRefGoogle Scholar
  3. Avelino C, Pedro S (2006) Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313:332–334CrossRefGoogle Scholar
  4. Bai S, Chen L, Chen S, Luo R, Li D, Chen A, Liu CC (2014) Synthesis of assembled ZnO structures by precipitation method in aqueous media. Sens Actuators B 190:760–767CrossRefGoogle Scholar
  5. Ballerini G, Ogle K, Barth´es-Labrousse MG (2007) The acid–base properties of the surface of native zinc oxide layers: an XPS study of adsorption of 1,2-diaminoethane. Appl Surf Sci 253:6860–6867CrossRefGoogle Scholar
  6. Bouvy C, Marine W, Sporken R, Su BL (2006) Photoluminescence properties and quantum size effect of ZnO nanoparticles confined inside a faujasite × zeolite matrix. Chem Phys Lett 428:312–316CrossRefGoogle Scholar
  7. Boymans E, Boland S, Witte PT, Müller C, Vogt D (2013) Chemoselective hydrogenation of functionalized nitroarenes using supported Mo promoted Pt nanoparticles. ChemCatChem 5:431–434CrossRefGoogle Scholar
  8. Cárdenas-Lizana F, Gómez-Quero S, Keane MA (2008) Exclusive production of chloroaniline from chloronitrobenzene over Au/TiO2 and Au/Al2O3. Chemsuschem 1:215–221CrossRefGoogle Scholar
  9. Chen LC, Tu YJ, Wang YS, Kan RS, Huang CM (2008) Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. J Photochem Photobiol A 199:170–178CrossRefGoogle Scholar
  10. Chen SF, Zhao W, Zhang SJ, Liu W (2009) Preparation, characterization and photocatalytic activity of N-containing ZnO powder. J Chem Eng 148:263–269CrossRefGoogle Scholar
  11. Chen P, Khetan A, Yang F, Migunov V, Weide P, Stürmer SP, Guo P, Kähler K, Xia W, Mayer J, Pitsch H, Simon U, Muhler M (2017) Experimental and theoretical understanding of nitrogen-doping-induced strong metal–support interactions in Pd/TiO2 catalysts for nitrobenzene hydrogenation. ACS Catal 7:1197–1206CrossRefGoogle Scholar
  12. Corma A, Concepcion P, Serna P (2007) A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew Chem Int Ed 46:7266–7269CrossRefGoogle Scholar
  13. Corma A, González-Arellano C, Iglesias M, Sánchez F (2009) Gold complexes as catalysts: chemoselective hydrogenation of nitroarenes. Appl Catal A Gen 356:99–102CrossRefGoogle Scholar
  14. Daneshvar N, Salari D, Khataee AR (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A Chem 162:317–322CrossRefGoogle Scholar
  15. Dunnivant FM, Schwarzenbach RP, Macalady DL (1992) Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environ. Sci Technol. 26:2133–2141CrossRefGoogle Scholar
  16. Fu L, Cai W, Wang A, Zheng Y (2015) Photocatalytic hydrogenation of nitrobenzene to aniline over tungsten oxide-silver nanowires. Mater Lett 142:201–203CrossRefGoogle Scholar
  17. Georgekutty R, Seery MK, Pillai SC (2008) A highly efficient Ag–ZnO photocatalyst: synthesis, properties, and mechanism. J Phys Chem C 112:13563–13570CrossRefGoogle Scholar
  18. Georgiou D, Melidis P, Aivasidis A, Gimouhopoulos K (2002) Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dyes Pigm 52:69–78CrossRefGoogle Scholar
  19. Hameed A, Montini T, Gombac V, Fornasiero P (2009) Photocatalytic decolourization of dyes on NiO–ZnO nanocomposites. J Photochem Photobiol Sci 8:677–682CrossRefGoogle Scholar
  20. Hao C, Guo X, Sankar M, Yang H, Ma B, Zhang Y, Tong X, Jin G, Guo X (2018) Synergistic effect of segregated Pd and Au nanoparticles on semiconducting SiC for efficient photocatalytic hydrogenation of nitroarenes. ACS Appl Mater Interfaces 10:23029–23036CrossRefGoogle Scholar
  21. Hariharan C (2006) Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: revisited. Appl Catal A 304:55–61CrossRefGoogle Scholar
  22. Hu X, Masuda Y, Ohji T, Kato K (2010) Fabrication of Zn(OH)2/ZnO nanosheet-ZnO nanoarray hybrid structured films by a dissolution-recrystallization route. J Am Ceram Soc 93(3):881–886CrossRefGoogle Scholar
  23. Iihama S, Furukawa S, Komatsu T (2015) Efficient catalytic system for chemoselective hydrogenation of halonitrobenzene to haloaniline using PtZn intermetallic compound. ACS Catal 6:742–746CrossRefGoogle Scholar
  24. Kamegawa T, Seto H, Matsuura S, Yamashita H (2012) Preparation of hydroxynaphthalene-modified TiO2 via formation of surface complexes and their applications in the photocatalytic reduction of nitrobenzene under visible-light irradiation. ACS Appl Mater Interfaces 4:6635–6639CrossRefGoogle Scholar
  25. Kou J, Lu C, Wang J, Chen Y, Xu Z, Varma RS (2017) Selectivity enhancement in heterogeneous photocatalytic transformations. Chem Rev 117:1445–1514CrossRefGoogle Scholar
  26. Lakshminarayana B, Satyanarayana G, Subrahmanyam C (2018) Bimetallic Pd–Au/TiO2 nanoparticles: an efficient and sustainable heterogeneous catalyst for rapid catalytic hydrogen transfer reduction of nitroarenes. ACS Omega 3:13065–13072CrossRefGoogle Scholar
  27. Li D, Haneda H (2003) Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere 51:129–137CrossRefGoogle Scholar
  28. Liu M, Zhu X, Chen R, Liao Q, Feng H, Li L (2016) Catalytic membrane microreactor with Pd/γ-Al2O3 coated PDMS film modified by dopamine for hydrogenation of nitrobenzene. Chem Eng J 301:35–41CrossRefGoogle Scholar
  29. Liu X, Su Y, Lang J, Chai Z, Wang X (2017) A novel Au-loaded Na2Ta2O6 multifunctional catalyst: thermocatalytic and photocatalytic elimination of the poisonous nitrobenzene derivatives from wastewater under natural condition. J Alloys Compd 695:60–69CrossRefGoogle Scholar
  30. Lizama C, Freer J, Baeza J, Mansilla HD (2002) Optimized photodegradation of reactive blue 19 on TiO2 and ZnO suspensions. Catal Today 76:235–246CrossRefGoogle Scholar
  31. Maji T, Karmakar A, Reiser O (2011) Visible-light photoredox catalysis: dehalogenation of vicinal dibromo-, alpha-halo-, and alpha, alpha-dibromocarbonyl compounds. J Org Chem 76:736–739CrossRefGoogle Scholar
  32. Mohamed RM, Ibrahim FM (2015) Visible light photocatalytic reduction of nitrobenzene using Ag/Bi2MoO6 nanocomposite. J Ind Eng Chem 22:28–33CrossRefGoogle Scholar
  33. Mohan R, Krishnamoorthy K, Kim S-J (2012) Enhanced photocatalytic activity of Cu-doped ZnO nanorods. Solid State Commun 152:375–380CrossRefGoogle Scholar
  34. Narayanam JM, Stephenson CR (2011) Visible light photoredox catalysis: applications in organic synthesis. Chem Soc Rev 40:102–113CrossRefGoogle Scholar
  35. Pardeshi SK, Patil AB (2009) Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. J Hazard Mater 163:403–409CrossRefGoogle Scholar
  36. Parid KM, Parij S (2006) Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide. Sol Energy 80:1048–1054CrossRefGoogle Scholar
  37. Patil AB, Patil KR, Pardeshi SK (2010) Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO. J Hazard Mater 183:315–323CrossRefGoogle Scholar
  38. Piggott EK, Hope TO, Crabbe BW, Jalbert PM, Orlova G, Hallett-Tapley GL (2017) Exploiting the photocatalytic activity of gold nanoparticle-functionalized niobium oxide perovskites in nitroarene reductions. Catal Sci Technol 7:5758–5765CrossRefGoogle Scholar
  39. Ping L, Teranishi T, Asakura K, Miyake M, Toshima N (1999) Polymer-protected Ni/Pd bimetallic nano-clusters: preparation, characterization and catalysis for hydrogenation of nitrobenzene. J Phys Chem B 103:9673–9682CrossRefGoogle Scholar
  40. Qiu B, Deng Y, Li Q, Shen B, Xing M, Zhang J (2016) Rational design of a unique ternary structure for highly photocatalytic nitrobenzene reduction. J Phys Chem C 120:12125–12131CrossRefGoogle Scholar
  41. Reife A, Fremann HS (1996) Environmental chemistry of dyes and pigments. Wiley, New York, pp 307–316Google Scholar
  42. Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82CrossRefGoogle Scholar
  43. Sepulveda-Guzman S, Reeja-Jayan B, de la Rosa E, Torres-Castro A, Gonzalez-Gonzalez V, Jose-Yacaman M (2009) Reverse microemulsion in situ crystallizing growth of ZnO nanorods and application for NO2 sensor. Mater Chem Phys 115:172–178CrossRefGoogle Scholar
  44. Shiraishi Y, Hirai T (2008) Selective organic transformations on titanium oxide-based photocatalysts. J Photochem Photobiol C 9:157–170CrossRefGoogle Scholar
  45. Tanaka K, Padermpole K, Hisanaga T (2000) Photocatalytic degradation of commercial azo dyes. Water Res 34:327–333CrossRefGoogle Scholar
  46. Tanaka A, Nishino Y, Sakaguchi S, Yoshikawa T, Imamura K, Hashimoto K, Kominami H (2013) Functionalization of a plasmonic Au/TiO2 photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aniline in 2-propanol suspensions under irradiation of visible light. Chem Commun 49:2551–2553CrossRefGoogle Scholar
  47. Tang WZ, Huren AN (1995) UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 31:4157–4170CrossRefGoogle Scholar
  48. Tucker JW, Narayanam JMR, Krabbe SW, Stephenson CRJ (2010) Electron transfer photoredox catalysis: intramolecular radical addition to indoles and pyrroles. Org Lett 12:368–371CrossRefGoogle Scholar
  49. Turáková M, Králik M, Lehocký P, Pikna Ľ, Smrčová M, Remeteiová D, Hudák A (2014) Influence of preparation method and palladium content on Pd/C catalysts activity in the liquid phase hydrogenation of nitrobenzene to aniline. Appl Catal A Gen 476:103–112CrossRefGoogle Scholar
  50. Wang JP, Xu CH, You YF, Si ZS, Li DL, Shi SQ (2013) Fast synthesis of Cu-doped ZnO nanosheets at ambient condition. Cryst Res Technol 48(5):273–278CrossRefGoogle Scholar
  51. Wang X, Cárdenas-Lizana F, Keane MA (2014) Toward sustainable chemoselective nitroarene hydrogenation using supported gold as catalyst. ACS Sustain Chem Eng 2:2781–2789CrossRefGoogle Scholar
  52. Wu JM, Chen Y-R (2011) Ultraviolet-light-assisted formation of ZnO nanowires in ambient air: comparison of photoresponsive and photocatalytic activities in zinc hydroxide. J Phys Chem C 115:2235–2243CrossRefGoogle Scholar
  53. Xiao Q, Ouyang L (2009) Photocatalytic photodegradation of xanthate over Zn1 − xMnxO under visible light irradiation. J Alloy Compd 479:4–7CrossRefGoogle Scholar
  54. Xiao Q, Yao C (2011) Preparation and visible light photocatalytic activity of Zn1 − xFexO nanocrystalline. Mater Chem Phys 130:5–9CrossRefGoogle Scholar
  55. Xu D, Hu Z, Li W, Luo S, Xu Z (2005) Hydrogenation in ionic liquids: an alternative methodology toward highly selective catalysis of halonitrobenzenes to corresponding haloanilines. J Mol Catal A Chem 235:137–142CrossRefGoogle Scholar
  56. Xu C, Cao L, Su G, Liu W, Qu X, Yu Y (2010) Preparation characterization and photocatalytic activity of Co-doped ZnO powders. J Alloy Compd 497:373–376CrossRefGoogle Scholar
  57. Xuan J, Xiao WJ (2012) Visible-light photoredox catalysis. Angew Chem Int Ed 51:6828–6838CrossRefGoogle Scholar
  58. Yan Z, Chen Q, Xia P, Ma W, Ren B (2016) Strong interactions between Au nanoparticles and TiO2 mesocrystal: highly selective photocatalytic reduction of nitroarenes. Nanotechnology 27:035707CrossRefGoogle Scholar
  59. Yousefi M, Amiri M, Azimirad R, Moshfegh AZ (2011) Enhanced photo-electrochemical activity of Cedoped ZnO nanocomposite thin films under visible light. J Electroanal Chem 661:106–112CrossRefGoogle Scholar
  60. Yu J, Hai Y, Cheng B (2011) Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. J Phys Chem C 115:4953–4958CrossRefGoogle Scholar
  61. Zhang Z, Shao C, Li X, Wang C, Zhang M, Liu Y (2010) Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. J Appl Mater Interface 2:2915–2923CrossRefGoogle Scholar
  62. Zhao J, Wang L, Yan X, Yang Y, Lei Y, Zhou J, Huang Y, Gu Y, Zhang Y (2011) Structure and photocatalytic activity of Ni-doped ZnO nanorods. Mater Res Bull 46:1207–1210CrossRefGoogle Scholar
  63. Zhao J, Chen C, Zhang B, Jiao Z, Zhang J, Yang J, Qin Y (2019) Tuning the selectivity of Pt-catalyzed tandem hydrogenation of nitro compounds via controllable NiO decoration by atomic layer deposition. Catal Commun 121:48–52CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Advanced Materials DepartmentCentral Metallurgical R&D Institute, CMRDIHelwanEgypt

Personalised recommendations