Transforming polymorphs of Co-doped TiO2 nanoparticles: an efficient photo-electrode for dye-sensitized solar cells

  • R. Jeba BeulaEmail author
  • D. Suganthi
  • A. Abiram
  • B. Vidhya
Original Article


Simple sol–gel assisted spin coating technique was used to prepare cobalt-doped TiO2 films for the application of dye-sensitized solar cells (DSSC). TiO2 photo-electrodes with few Co concentrations (0, 0.025, 0.05, 0.075 and 0.1 M) were prepared on conducting glass substrates. The morphology, structure and composition of the Co:TiO2 films were observed using SEM, XRD and EDAX analysis. The average crystallite size of Co:TiO2 nanoparticles obtained from diffractograms are in the range of 3–12 nm. The transformation of polymorphs from anatase to rutile and vice versa for the increasing concentrations of Co in TiO2 films is observed. The values of optical bandgap energy for Co-doped films are observed to be higher than the pure TiO2 film and the highest is for the dopant level of 0.025 M. Doping of 0.1 M Co in TiO2 enhances the power conversion efficiency of DSSC by 65% compared to pure TiO2 film, demonstrating the influence of Co doping on the functioning of DSSC.


Co-doped TiO2 TiO2 DSSC Spin coating technique Sol–gel 


Compliance with ethical standards

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.


  1. Alamgir WK, Ahmad S, Hassan MM, Naqvi AH (2014) Structural phase analysis, band gap tuning and fluorescence properties of Co doped TiO2 nanoparticles. Opt Mater 38:278–285CrossRefGoogle Scholar
  2. Anupama C, Kumarmani R, Vasundhara M, Joshi SR, Singh J (2018) Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles. RSC Adv 2018:10939–10947Google Scholar
  3. Bakhshayesh AM, Bakhshayesh N (2015) Enhanced performance of dye-sensitized solar cells aided by Sr, Cr co-doped TiO2 xerogel films made of uniform spheres. J Colloid Interface Sci 460:18–28CrossRefGoogle Scholar
  4. Chen SW, Lee JM, Lu KT, Pao CW, Lee JF, Chan TS, Chen JM (2010) Band-gap narrowing of TiO2 doped with Ce probed with X-ray absorption spectroscopy. Appl Phys Lett 97:012104CrossRefGoogle Scholar
  5. Chen WF, Koshy P, Huang Y, Adabifiroozjaei E, Yao Y, Sorrell CC (2016) Effect of precipitation, liquid formation, and intervalence charge transfer on the properties and photocatalytic performance of cobalt- or vanadium-doped TiO2 thin films. Int J Hydrog Energy 41:19025–19026CrossRefGoogle Scholar
  6. Choi HC, Jung YM, Kim SB (2005) Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc 37:33–38CrossRefGoogle Scholar
  7. Choudhury B, Choudhury A (2012) Luminescence characteristics of cobalt doped TiO2 nanoparticles. J Lumin 132:178–184CrossRefGoogle Scholar
  8. Cui J, Zhang Z, Liu D, Zhang D, Wei H, Zou L, Yao L, Zhang C, Huanhuan L, Tang C, Jiang N, Parkin IP, Guo D (2019a) Unprecedented piezoresistance coefficient in strained silicon carbide. Nano Lett 19:6569–6576CrossRefGoogle Scholar
  9. Cui J, Zhang Z, Jiang H, Jiang H, Zou L, Guo X, Yao L, Ivan PP, Guo D (2019b) Ultrahigh recovery of fracture strength on mismatched fractured amorphous surfaces of silicon carbide. ACS Nano 13:7483–7492CrossRefGoogle Scholar
  10. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, LawrenceGoogle Scholar
  11. Deborah K, Pallotti LP, Maddalena P, Di Fonzo F, Lettieri S (2017) Photoluminescence mechanisms in anatase and rutile TiO2. J Phys Chem C 121:9011–9021CrossRefGoogle Scholar
  12. Govindaraj R, Senthil Pandian M, Ramasamy P, Mukhopadhyay S (2015) Sol–gel synthesized mesoporous anatase titanium dioxide nanoparticles for dye sensitized solar cell (DSSC) applications. Bull Mater Sci 38:291–296CrossRefGoogle Scholar
  13. Hume-Rothery W, Smallman RE, Haworth CW (1940) Structure of metals and alloys. J Chem Educ 17:600Google Scholar
  14. Jaiswal R, Patel N, Dashora A, Fernandes R, Yadav M, Edla R, Varma RS, Kothari DC, Ahuja BL, Miotello A (2016) Efficient Co–B-codoped TiO2 photocatalyst for degradation of organic water pollutant under visible light. Appl Catal B Environ 183:242–253CrossRefGoogle Scholar
  15. Jeong JA, Kim HK (2011) Thickness effect of RF sputtered TiO2 passivating layer on the performance of dye-sensitized solar cells. Sol Energy Mater Sol Cells 95:344–348CrossRefGoogle Scholar
  16. Jin EM, Park KH, Jin B, Yun JJ, Gu HB (2010) Photosensitization of nanoporous TiO2 films with natural dye. Phys Scr 139:014006CrossRefGoogle Scholar
  17. Lee SJ, Cho IH, Kim H, Hong SJ, Lee HY (2009) Microstructure characterization of TiO2 photoelectrodes for dye sensitized solar cell using statistical design of experiments. Trans Electr Electron Mater 10:177–181CrossRefGoogle Scholar
  18. Lee M, Balasingam SK, Ko Y, Jeong HY, Min BK, Yun YJ, Jun Y (2016) Graphene modified vanadium pentoxide nanobelts as an efficient counter electrode for dye-sensitized solar cells. Synth Met 215:110–115CrossRefGoogle Scholar
  19. Low FW, Lai CW, Hamid SB (2017) Study of reduced graphene oxide film incorporated of TiO2 species for efficient visible light driven dye-sensitized solar cell. J Mater Sci Mater Electron 28:3819–3836CrossRefGoogle Scholar
  20. Nair AS, Jose R, Yang S, Ramasrishna S (2011) A simple recipe for an efficient TiO2 nanofiber-based dye-sensitized solar cell. J Colloid Interface Sci 353:39–45CrossRefGoogle Scholar
  21. Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase TiO2. J Raman Spectrosc 7:321CrossRefGoogle Scholar
  22. Park NG, Van de Lagemaat J, Frank A (2000) Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. J Phys Chem B 104:8989–8994CrossRefGoogle Scholar
  23. Rashad MM, Shalan AE, Lira-Cantu M, Abdel-Mottaleb MSA (2013) Enhancement of TiO2 nanoparticle properties and efficiency of dye-sensitized solar cells using modifiers. Appl Nanosci 3:167–174CrossRefGoogle Scholar
  24. Reddy KM, Manorama SV, Reddy AR (2002) Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys 78:239CrossRefGoogle Scholar
  25. Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor. J Phys Chem 99:16646–16654CrossRefGoogle Scholar
  26. Spurr RA, Myres H (1957) Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal Chem 29:760–762CrossRefGoogle Scholar
  27. Stagi L, Carbonaro CM, Corpino R, Chiriu D, Ricci PC (2015) Optically controlled phase variation of TiO2 nanoparticles. Phys Status Solidi B 252:1124–1129CrossRefGoogle Scholar
  28. Stengl V, Bakardjieva S (2010) Molybdenum-doped anatase and its extraordinary photocatalytic activity in the degradation of orange II in the UV and Vis regions. J Phys Chem C 114:19308–19317CrossRefGoogle Scholar
  29. Sutanto B, Arifin Z, Suyitno S (2018) Structural characterisation and optical properties of aluminum-doped zinc oxide nanofibers synthesized by electrospinning. J Eng Sci Technol 13:715–724Google Scholar
  30. Tang YB, Lee CS, Xu J, Liu ZT, Chen ZH, He Z, Cao YL, Yuan G, Song H, Chen L, Luo L, Cheng HM, Zhang WJ, Bello I, Lee ST (2010) Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye sensitized solar cell application. J Am Chem Soc 4:3482–3488Google Scholar
  31. Umar A (2009) Growth of comb-like ZnO nanostructures for dye-sensitized solar cells applications. Nanoscale Res Lett 4:1004–1008CrossRefGoogle Scholar
  32. Wu WY, Chang YM, Ting JM (2010) Room-temperature synthesis of single-crystalline anatase TiO2 nanowires. Cryst Growth Des 10:1646–1651CrossRefGoogle Scholar
  33. Xiuquan GU, Wang B, Zhang Q, Zhao Y, Qiang Y (2013) Preparation of ultrathin TiO2 single-crystal nanowires for high performance dye sensitized solar cells. J Mater Sci Mater Electron 24:520–523CrossRefGoogle Scholar
  34. Xu CX, Sun XW, Dong ZL, Tan ST, Cui YP, Wang BP (2005) Manganese-doped zinc oxide tetratubes and their photoluminescent properties. J Appl Phys 98:113513CrossRefGoogle Scholar
  35. Yang M, Hume C, Lee S, Son YH, Lee JK (2010) Correlation between photocatalytic efficacy and electronic band structure in hydrothermally grown TiO2 nanoparticles. J Phys Chem C 114:15292–15297CrossRefGoogle Scholar
  36. Zhang Z, Cui J, Wang B, Jiang H, Chen G, Jinhong Y, Lin C, Tang C, Hartmaier A, Zhang J, Luo J, Rosenkranz A, Jiang N, Guo D (2018a) In situ TEM observation of rebonding on fractured silicon carbide. Nanoscale 10:6261–6269CrossRefGoogle Scholar
  37. Zhang Z, Shi Z, Yuefeng D, Zhijian Y, Guo L, Guo D (2018b) A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry. Appl Surf Sci 427:409–415CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • R. Jeba Beula
    • 1
    Email author
  • D. Suganthi
    • 2
  • A. Abiram
    • 1
  • B. Vidhya
    • 1
  1. 1.Karunya Institute of Technology and SciencesCoimbatoreIndia
  2. 2.Hindustan Institute of Technology and ScienceChennaiIndia

Personalised recommendations