Advertisement

Photon-enhanced thermionic emission solar energy converters with GaAs wire array cathode under external electric field

  • Yu Diao
  • Lei LiuEmail author
  • Sihao Xia
Original Article
  • 37 Downloads

Abstract

In this work, a theoretical emission model for GaAs wire array cathode based on photon-enhanced thermionic emission (PETE) under the action of external electric field is deduced utilizing two-dimensional continuity equations. With the electron energy distribution and elevation angle of emitted electron considered, the electron collection probability for each emission surface of GaAs wire array cathode varying with the field intensity is simulated. Combining emission current density with electron collection probability, the effective collection current density of GaAs wire array cathode is obtained. Results suggest that the external electric field can effectively enhance the collection probability of emitted electrons within GaAs wire array, which contributes to the improvement of the actual photoelectric conversion capability of GaAs wire array cathodes. For GaAs wire array cathodes, the effective collection current density can reach the maximum value with the incident angle of 20° and field intensity of 0.9 V/μm. Applying a transparent phosphorus-doped diamond film as the anode material, the simulated conversion efficiency increases from 18.85 to 44.80% as the electron affinity of GaAs wire cathode rises from 0 to 0.6 eV.

Keywords

GaAs wire array cathode Photon-enhanced thermionic emission External electric field Electron collection 

Notes

Acknowledgements

This work has been partially sponsored by the Qing Lan Project of Jiangsu Province (2017-AD41779), by the Six Talent Peaks Project in Jiangsu Province (2015-XCL-008), by the Fundamental Research Funds for the Central Universities (30916011206).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest in either personal or financial aspects.

References

  1. Allen GA (1971) The performance of negative electron affinity photocathodes. J Phys D Appl Phys 4:308CrossRefGoogle Scholar
  2. Chen SD, Chen YY, Lee SC (2005) Transverse-electric-field-enhanced response in InAs/AlGaAs/GaAs quantum-dot infrared photodetectors. Appl Phys Lett 86(25):6912Google Scholar
  3. Chen Y, Arinze ES, Pamquist N, Thon SM (2016) Advancing colloidal quantum dot photovoltaic technology. Nanophotonics 5(1):31Google Scholar
  4. Chow TT (2010) A review on photovoltaic/thermal hybrid solar technology. Appl Energ 87(2):365CrossRefGoogle Scholar
  5. Cui Z, Ke X, Li E, Liu T (2016) Electronic and optical properties of titanium-doped GaN nanowires. Mater Des 96:409CrossRefGoogle Scholar
  6. Cui Z, Li E, Ke X, Zhao T, Yang Y, Ding Y, Liu T, Qu Y, Xu S (2017) Adsorption of alkali-metal atoms on GaN nanowires photocathode. Appl Surf Sci 423:829CrossRefGoogle Scholar
  7. Datas A, Algora C (2010) Detailed balance analysis of solar thermophotovoltaic systems made up of single junction photovoltaic cells and broadband thermal emitters. Sol Energ Mat Sol C 94(12):2137CrossRefGoogle Scholar
  8. Ding X, Ge X, Zou J, Zhang Y, Peng X, Deng W, Cheng Z, Zhao W, Chang B (2016) Photoemission characteristics of graded band-gap AlGaAs/GaAs wire photocathode. Opt Commun 367:149CrossRefGoogle Scholar
  9. Eden RC, Moll JL, Spicer WE (1967) Experimental evidence for optical population of the X minima in GaAs. Phys Rev Lett 18:597CrossRefGoogle Scholar
  10. Feng C, Zhang Y, Qian Y, Chang B, Shi F, Jiao G, Zou J (2015) Photoemission from advanced heterostructured AlxGa1−xAs/GaAs photocathodes under multilevel built-in electric field. Opt Express 23(15):19478CrossRefGoogle Scholar
  11. Feng C, Zhang Y, Qian Y, Wang Z, Liu J, Chang B, Shi F, Jiao G (2018) High-efficiency AlxGa1−xAs/GaAs cathode for photon-enhanced thermionic emission solar energy converters. Opt Commun 413:1CrossRefGoogle Scholar
  12. Garg HP, Adhikari RS (1997) Conventional hybrid photovoltaic/thermal (PV/T) air heating collectors: steady-state simulation. Renew Energy 11(3):363CrossRefGoogle Scholar
  13. Ge X, Zou J, Deng W, Peng X, Wang W, Jiang S, Ding X, Chen Z, Zhang Y, Chang B (2015) Theoretical analysis and modeling of photoemission characteristics of GaAs nanowire array photocathodes. Mater Res Express 2(9):095015CrossRefGoogle Scholar
  14. Geronimo GD, Deptuch G, Dragone A, Radeka V, Rehak P, Castodi A, Fazzi A, Guazzoni C, Rijssenbeek M (2006) A novel position and time sensing active pixel sensor with field-assisted electron collection for charged particle tracking and electron microscopy. Nucl Instrum Methods A 568(1):167CrossRefGoogle Scholar
  15. Kalogirou SA (2014) Solar energy engineering, 2nd edn. ElsevierGoogle Scholar
  16. Lenert A, Bierman DM, Nam Y, Chan WR, Celanovic I, Soljacic M, Wang EN (2014) A nanophotonic solar thermophotovoltaic device. Nat Nanotechnol 9(2):126CrossRefGoogle Scholar
  17. Liu YZ, Moll JL, Spicer WE (1970) Quantum yield of GaAs semitransparent photocathode. Appl Phys Lett 17:60CrossRefGoogle Scholar
  18. Liu L, Diao Y, Xia S (2019) High-performance GaAs nanowire cathode for photon-enhanced thermionic emission solar converters. J Mater Sci 54:5605CrossRefGoogle Scholar
  19. Reck K, Hansen O (2010) Thermodynamics of photon-enhanced thermionic emission solar cells. Appl Phys Lett 104(2):023902CrossRefGoogle Scholar
  20. Sahasrabuddhe K, Schwede JW, Bargatin I (2012) A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission. J Appl Phys 112:094907CrossRefGoogle Scholar
  21. Scharber MC, Sariciftci NS (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci 38(12):929CrossRefGoogle Scholar
  22. Schwede JW, Bargatin I, Riley DC, Hardin BE, Rosenthal SJ, Sun Y, Schmitt F, Pianetta P, Howe RT, Shen ZX, Melosh NA (2010) Photon-enhanced thermionic emission for solar concentrator systems. Nat Mater 9(9):762CrossRefGoogle Scholar
  23. Schwede JW, Sarmiento T, Narasimhan VK, Rosenthal SJ, Riley DC, Schnitt F, Bargatin I, Sahasrabuddhe K, Howe RT, Harris JS, Melosh NA, Shen ZX (2013) Photon-enhanced thermionic emission from heterostructures with low interface recombination. Nat Commun 4:1576CrossRefGoogle Scholar
  24. Segev G, Weisman D, Rosenwaks Y, Kribus A (2015) Negative space charge effects in photon-enhanced thermionic emission solar converters. Appl Phys Lett 107(1):013908CrossRefGoogle Scholar
  25. Snaith HJ (2018) Present status and future prospects of perovskite photovoltaics. Nat Mater 17:372CrossRefGoogle Scholar
  26. Su S, Wang Y, Wang J, Xu Z, Chen J (2014) Material optimum choices and parametric design strategies of a photon-enhanced solar cell hybrid system. Sol Energy Mater Sol C 128:112CrossRefGoogle Scholar
  27. Sun ML, Chou JP, Gao JF, Cheng Y, Hu A, Tang WC, Zhang G (2018) Exceptional optical absorption of buckled arsenene covering a broad spectral range by molecular doping. ACS Omega 3:8514CrossRefGoogle Scholar
  28. Tang W, Yang W, Yang Y, Sun C, Cai Z (2014) GaAs film for photon-enhanced thermionic emission solar harvesters. Mater Sci Semicond Process 25:143CrossRefGoogle Scholar
  29. Taylor CR (1983) Maximizing the quantum efficiency of microchannel plate detectors: the collection of photoelectrons from the interchannel web using an electric field. Rev Sci Instrum 54(2):171CrossRefGoogle Scholar
  30. Tyagi VV, Kaushik SC, Tyagi SK (2012) Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renew Sustain Energy Rev 16:1383CrossRefGoogle Scholar
  31. Varpula A, Prunnila M (2012) Diffusion-emission theory of photon enhanced thermionic emission solar energy harvesters. J Appl Phys 112(4):044506CrossRefGoogle Scholar
  32. Wang Y, Liao T, Zhang Y, Chen X, Su S, Chen J (2016) Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices. J Appl Phys 119(4):045106CrossRefGoogle Scholar
  33. Wang K, Fu R, Wang G, Tran HC, Chang BK, Yang L (2017) High-performance photon-enhanced thermionic emission solar energy converters with AlxGa1−xAs∕GaAs cathode under multilevel built-in electric field. Opt Commun 402:85CrossRefGoogle Scholar
  34. Yang Y, Yang W, Sun C (2015) Diffusion emission model for solid-state photon-enhanced thermionic emission solar energy converters. Mater Sci Semicond Process 35:120CrossRefGoogle Scholar
  35. Zhi CY, Bai XD, Wang EG (2005) Synthesis and field-electron-emission behavior of aligned GaAs nanowires. Appl Phys Lett 86(21):213108CrossRefGoogle Scholar
  36. Zhuravlev AG, Romanov AS, Alperovich VL (2014) Photon-enhanced thermionic emission from p-GaAs with nonequilibrium Cs overlayers. Appl Phys Lett 105(25):251602CrossRefGoogle Scholar
  37. Zou J, Zhang Y, Peng X, Deng W, Feng L, Chang B (2012) Energy distributions of electrons emitted from reflection-mode Cs-covered GaAs photocathodes. Appl Opt 51(31):7662CrossRefGoogle Scholar
  38. Zou J, Ge X, Zhang Y, Deng W, Zhu Z, Wang W, Peng X, Chen Z, Chang B (2016) Negative electron affinity GaAs wire-array photocathodes. Opt Express 24(5):4632CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Department of Optoelectronic Technology, School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations