Shape-dependent antifungal activity of ZnO particles against phytopathogenic fungi

  • Nicolaza Pariona
  • F. Paraguay-DelgadoEmail author
  • Sofia Basurto-Cereceda
  • J. E. Morales-Mendoza
  • L. A. Hermida-Montero
  • Arturo I. Mtz-Enriquez
Original Article


Zinc oxide (ZnO) in vitro antifungal activity with three particle shapes were studied. These morphologies were obtained by colloidal and hydrothermal synthesis techniques, the synthesis parameters and methodology for both systems were optimized to obtain particles with the following shapes: nanoparticles, lamellar platelets and hexagonal rods. Morphology and particle size distribution were determined by electron microscopy imaging techniques. The antifungal activity of each type of ZnO particles was evaluated for three phytopathogenic fungi species; Fusarium oxysporum f.sp. lycopersici, Fusarium solani, and Colletotrichum gloeosporioids. ZnO with platelets shaped particles have better antifungal inhibition activity than rods and nanoparticles and it reduced growth up to 65% against Fusarium solani.


Zinc oxide Nanoparticles Phytopathogenic fungi Biocide 



This work was supported by FORDECYT 292399. We would like to thank W. Antunez, C. Ornelas, D. Lardizabal and E. Guerrero for their technical help at NaNoTech, Cimav, Chihuahua. Also, we would like to thank Zelene Duran Barradas for the kindly provide and preparation of the fungal suspensions.


  1. Agrios GN (1988a) Introduction to plant pathology. Plant pathology. Elsevier, Amsterdam, pp 3–39CrossRefGoogle Scholar
  2. Agrios GN (1988b) Plant diseases caused by fungi. Plant pathology. Elsevier, Amsterdam, pp 265–509CrossRefGoogle Scholar
  3. Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP et al (2017) ZnO nanoparticles (ZnO–NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci 7:225–241. CrossRefGoogle Scholar
  4. Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP et al (2019) ZnO-based nanofungicides: synthesis, characterization and their effect on the coffee fungi Mycena citricolor and Colletotrichum sp. Mater Sci Eng C 98:808–825. CrossRefGoogle Scholar
  5. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 136:71–79. CrossRefGoogle Scholar
  6. Cross SE, Innes B, Roberts MS et al (2007) Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20:148–154. CrossRefGoogle Scholar
  7. Doehlemann G, Bilal Ö, Zhu W, Sharon A (2017) Plant Pathogenic Fungi. Microbiol Spectr 5:1–23. Google Scholar
  8. Espitia PJP, Soares NDFF, dos Reis Coimbra JS et al (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464. CrossRefGoogle Scholar
  9. Feliziani Erica, Lucia Landi GR (2015) Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohydr Polym 132:111–117CrossRefGoogle Scholar
  10. Fu PP, Xia Q, Hwang HM et al (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64–75. CrossRefGoogle Scholar
  11. Hae-Jun P, Kim SH, Kim HJ, Choi S-H (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302CrossRefGoogle Scholar
  12. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215. CrossRefGoogle Scholar
  13. He W, Zhao H, Jia H et al (2014) Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity. Mater Res Bull 53:246–250. CrossRefGoogle Scholar
  14. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76. CrossRefGoogle Scholar
  15. Kanhed P, Birla S, Gaikwad S et al (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17. CrossRefGoogle Scholar
  16. Kislov N, Lahiri J, Verma H et al (2009) Photocatalytic degradation of methyl orange over single crystalline ZnO: orientation dependence of photoactivity and photostability of ZnO. Langmuir 25:3310–3315. CrossRefGoogle Scholar
  17. Koul O (2019) Nano-biopesticides today and future perspectives. Academic Press, San DiegoGoogle Scholar
  18. Landi L, Feliziani E, Romanazzi G (2014) Expression of defense genes in strawberry fruits treated with different resistance inducers. J Agric Food Chem 62:3047–3056. CrossRefGoogle Scholar
  19. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles e A review. Environ Pollut 172:76–85CrossRefGoogle Scholar
  20. Malandrakis AA, Kavroulakis N, Chrysikopoulos CV (2019) Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci Total Environ 670:292–299. CrossRefGoogle Scholar
  21. Montes-Fonseca F, Olive-Méndez SF, Holguín-Momaca JT et al (2017) Role of oxygen vacancies and In-doping on the sensing performance of ZnO particles. Phys Status Solidi C 1600226:1–6. Google Scholar
  22. Morales-Mendoza JE, Paraguay-Delgado F, Moller JAD et al (2019) Structure and optical properties of ZnO and ZnO2 nanoparticles. J Nano Res 56:49–62. CrossRefGoogle Scholar
  23. Nasrin T, Mohammad Reza N, Elahe Badri Z (2011) Enhanced antibacterial performance of hybrid semiconductor nanomaterials: znO/SnO2 nanocomposite thin films. Appl Surf Sci 258:547–555CrossRefGoogle Scholar
  24. Nasrin T, Seyedeh Matin A, Monir D (2013) Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. Photochem Photobiol 120:66–73CrossRefGoogle Scholar
  25. Pariona N, Mtz-Enriquez AI, Sánchez-Rangel D et al (2019) Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Adv 9:18835–18843. CrossRefGoogle Scholar
  26. Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102:186–196. CrossRefGoogle Scholar
  27. Pimentel David, McLaughlin Lori, Zepp Andrew, Benyamin Lakitan T, Kraus Peter Kleinman, Fabius Vancini W, John Roach EG, William S, Keeton GS (1993) Environmental and economic effects of reducing pesticide use in agriculture. Agric Ecosyst Environ 46:273–288CrossRefGoogle Scholar
  28. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, New YorkCrossRefGoogle Scholar
  29. Price CL, Parker JE, Warrilow AG et al (2015) Azole fungicides - understanding resistance mechanisms in agricultural fungal pathogens. Pest Manag Sci 71:1054–1058. CrossRefGoogle Scholar
  30. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. CrossRefGoogle Scholar
  31. Romashchenko AV, Kan T-W, Petrovski DV et al (2017) Nanoparticles associate with intrinsically disordered RNA-binding proteins. ACS Nano 11:1328–1339. CrossRefGoogle Scholar
  32. Saharana Vinod, Sharma Garima, Meena Yadav MKC, Sharma SS, Pal Ajay, Ramesh Raliya PB (2015) Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353CrossRefGoogle Scholar
  33. Shahid S, Mudassar Sher M (2017) Solvothermal synthesis and biological activity of ni-doped zinc oxide nanoparticles. Press Procedia. Google Scholar
  34. Shang L, Nienhaus K, Nienhaus G (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:5. CrossRefGoogle Scholar
  35. Sharma RK, Agarwal M, Balani K (2016) Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite. Mater Sci Eng C 62:843–851. CrossRefGoogle Scholar
  36. Shi L-E, Li Z-H, Zheng W et al (2014) Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Addit Contam Part A 31:173–186. CrossRefGoogle Scholar
  37. Stankovic A, Dimitrijevic S, Uskoković D (2013) Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Colloids Surfaces B Biointerfaces 102:21–28CrossRefGoogle Scholar
  38. Sun Q, Li J, Le T (2018) Zinc oxide nanoparticle as a novel class of antifungal agents: current advances and future perspectives. J Agric Food Chem 66:11209–11220. CrossRefGoogle Scholar
  39. Thabet S, Simonet F, Lemaire M, Guillard C (2014) Impact of photocatalysis on fungal cells: depiction of cellular and molecular effects on Saccharomyces cerevisiae. Appl Environ Microbiol 80:7527–7535. CrossRefGoogle Scholar
  40. Wang YX, Sun J, Yu X (2011) Effect of the type of alcohol on the properties of zno nanopowders prepared with solvothermal synthesis. Mater Sci Forum 663–665:1103–1106. Google Scholar
  41. Woo SL, Ruocco M, Vinale F, et al (2014) Trichoderma-based Products and their Widespread Use in AgricultureGoogle Scholar
  42. Yang J, Hsiang T, Bhadauria V et al (2017) Plant fungal pathogenesis. Biomed Res Int 2017:1–2. Google Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Nicolaza Pariona
    • 1
  • F. Paraguay-Delgado
    • 2
    Email author
  • Sofia Basurto-Cereceda
    • 1
  • J. E. Morales-Mendoza
    • 2
  • L. A. Hermida-Montero
    • 2
  • Arturo I. Mtz-Enriquez
    • 3
  1. 1.Red de Estudios Moleculares Avanzados, Instituto de Ecología A.CXalapaMexico
  2. 2.Centro de Investigación en Materiales Avanzados SC (CIMAV)Laboratorio Nacional de NanotecnologíaChihuahuaMexico
  3. 3.Centro de Investigación y de Estudios Avanzados del IPN Unidad SaltilloCoahuilaMexico

Personalised recommendations