Advertisement

Modification mechanism of low-density polyethylene insulation by hydrophilic and hydrophobic porous SiO2 nanoparticles

  • Xue-Song Lv
  • Bai HanEmail author
  • Jian-Yu Wang
  • Jia-Xin Chang
  • Yu Hua
  • Wei-Feng Sun
Review Article
  • 9 Downloads

Abstract

To study the modification effect and mechanism of porous nanoparticles on electrical insulation performance, SiO2/low-density polyethylene (LDPE) nanocomposites with different filler concentrations are prepared by filling two kinds of porous SiO2 nanoparticles. The microstructure and dispersion of SiO2 in LDPE are characterized by scanning electron microscope [ the effect of nanofilling on the crystallinity of LDPE is analyzed by Differential Scanning Calorimetry (DSC)]. The mechanism of insulation modification of nanocomposites is studied by space charge and direct current conductance analysis of charge transport and Weibull distribution of breakdown field strength. By filling nanoscale SiO2 particles, the crystallinity of the LDPE matrix can be changed effectively. It is indicated that the hydrophobic SiO2 nanofillers with higher dispersity in LDPE matrix are more effective than hydrophilic SiO2 nanofillers to improve the crystallinity of LDPE matrix. The LDPE crystallinity of hydrophobic 1 wt% SiO2/LDPE nanocomposite approaches the highest value through heterogeneous nucleation. Compared with pure polyethylene, the conductivity of nanoporous SiO2 filled polyethylene composites is reduced obviously and the lowest conductivity is obtained for the nanocomposites filled with hydrophobic SiO2 nanoparticles in 1 wt% filling rate. The space-charge distribution and electric breakdown field strength further demonstrate that the filling of 1 wt% hydrophobic SiO2 nanoparticles can efficiently inhibit carrier injection and increase the breakdown field strength. The heterogeneous nucleation of porous SiO2 nanofillers increases the crystallinity of LDPE, and thus decreases the carrier mobility and increases the probability of charge charge trapping. The dispersion of nanofillers in composite is improved significantly by the symmetrical group –CH3 on the surface of hydrophobic SiO2 nanoparticles, which effectively suppresses the space-charge accumulation and evidently increases the electric breakdown field strength. It is proved that the special nanoscale interface in nanodielectrics can substantially improve the dielectric properties of polyethylene.

Keywords

Nano-dielectric Polyethylene Space charge Conductance current 

Notes

Acknowledgements

Project supported by the Program of Educational Commission of Heilongjiang Province, China (Grant No. 12541131).

References

  1. Han B, Sun Z, Chen Y, Tian FQ, Wang X (2010) Space charge distribution in low-density polyethylene(LDPE)/pumice composite. High Volt Eng 36(6):1398–1402Google Scholar
  2. Hanley TL, Burford RP, Fleming RJ, Barber KW (2003) A general review of polymeric insulation for use in HVDC cables. IEEE Electr Insul Mag 19(1):13–24CrossRefGoogle Scholar
  3. Hayase Y, Aoyama H, Tanaka Y, Takada T, Murata Y (2006) Space charge formation in LDPE/MgO nano-composite thin film under ultra-high DC electric stress. In: 2006 IEEE 8th international conference on properties & applications of dielectric materials (ICPADM), pp 159–162Google Scholar
  4. Jaeverberg N, Venkatesulu B, Edin H, Hillborg H (2014a) Prebreakdown current and dc breakdown strength of alumina-filled poly(ethylene-co-butyl acrylate) nanocomposites: part I—breakdown strength. IEEE Trans Dielectr Electr Insul 21(5):2135–2145CrossRefGoogle Scholar
  5. Jaeverberg N, Venkatesulu B, Edin H, Hillborg H (2014b) Prebreakdown current and DC breakdown strength of alumina-filled poly(ethylene-co-butyl acrylate) nanocomposites: part II—prebreakdown currents. IEEE Trans Dielectr Electr Insul 21(5):2135–2145CrossRefGoogle Scholar
  6. Khalil MS, Zaky AA, Hansen BS (1985) The influence of TiO2 and BaTiO3 additives on the space charge distribution in LDPE. In: Conference on electrical insulation & dielectric phenomena—Annual report 1985, pp 143–148Google Scholar
  7. Lau KY, Vaughan AS, Chen G, Hosier IL, Holt AF, Ching KY (2014) On the space charge and DC breakdown behavior of polyethylene/silica nanocomposites. IEEE Trans Dielectr Electr Insul 21(1):340–351CrossRefGoogle Scholar
  8. Lei QQ, Tian FQ, Yang C, He L, Wang Y (2010) Modified isothermal discharge current theory and its application in the determination of trap level distribution in polyimide films. J Electrostat 68(3):243–248CrossRefGoogle Scholar
  9. Lewis TJ (1994) Nanometric dielectrics. IEEE Trans Dielectr Electr Insul 1(5):812–825CrossRefGoogle Scholar
  10. Lewis TJ (2004a) Interfaces are the dominant feature of dielectrics at the nanomeyeric level. IEEE Trans Dielectr Electr Insul 11(5):739–753CrossRefGoogle Scholar
  11. Lewis TJ (2004b) Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans Dielectr Electr Insul 11(5):739–753CrossRefGoogle Scholar
  12. Li X, Xu M, Zhang K, Xie D (2014) Influence of organic intercalants on the morphology and dielectric properties of XLPE/montmorillonite nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 21(4):1705–1717CrossRefGoogle Scholar
  13. Li JL, Yin JH, Ji TY, Feng Yu, Liu YY, Zhao H, Li YP, Zhu CC, Yue D, Su B, Liu XX (2019) Microstructure evolution effect on high-temperature thermal conductivity of LDPE/BNNS investigated by in situ saxs. Mater Lett 234(1):74–78Google Scholar
  14. Liu WH, Wu JD, Wang QH, Li XG, Yin Y (2009) Effect of nano additive size on the space charge behaviour in nanocomposite polymer material. Proc CSEE 29:61–66Google Scholar
  15. Murakami Y, Nemoto M, Okuzumi S, Masuda S (2008) DC conduction and electrical breakdown of MgO/LDPE nanocomposite. IEEE Trans Dielectr Electr Insul 15(1):33–39CrossRefGoogle Scholar
  16. Roy M, Nelson JK, MacCrone R (2007) Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. J Mater Sci 42(11):3789–3799CrossRefGoogle Scholar
  17. Schmidt V, Riel H, Senz S, Karg S, Riess W, Gösele U (2006) Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2(1):85–88CrossRefGoogle Scholar
  18. Takada T, Hayase Y, Tanaka Y (2007a) Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite. IEEE Trans Dielectr Electr Insul 15(1):152–160CrossRefGoogle Scholar
  19. Takada T, Hayase Y, Tanaka Y, Okamoto T (2007b) Space charge trapping in electrical potential well caused by permanent and induced dipoles. In: Conference on electrical insulation and dielectric phenomena—annual report 2007, pp 417–420Google Scholar
  20. Tanaka T (2005) Dielectric nanocomposites with insulating properties. IEEE Trans Dielectr Electr Insul 12(5):914–928CrossRefGoogle Scholar
  21. Tanaka T, Kozako M, Fuse N, Ohki Y (2005) Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 12(4):669–681CrossRefGoogle Scholar
  22. Tanaka T, Bulinski A, Castellon J, Frechette M, Gubanski S, Kindersberger J, Montanari GC, Nagao M, Morshuis P, Tanaka Y, Pelissou S, Vaughan A, Ohki YW, Reed C, Sutton S, Han SJ (2011) Dielectric properties of XLPE/SiO2 nanocomposites based on CIGRE WG D1.24 cooperative test results. IEEE Trans Dielectr Electr Insul 18(5):1482–1517CrossRefGoogle Scholar
  23. Tian FQ, Zhang J, Peng X, Hou C (2017) Interface trapping effects on the charge transport characteristics of LDPE/ZnO nanocomposites. IEEE Trans Dielectr Electr Insul 24(3):1888–1895CrossRefGoogle Scholar
  24. Wang YY, Wang C (2015) Effect of nanoparticles on space charge behavior of XLPE/SiC nanocomposites In: 2015 IEEE conference on electrical insulation and dielectric phenomena (CEIDP), pp 491–494  Google Scholar
  25. Wu JD, Yin Y, Lan L, Wang QH, Li XG, Xiao DM (2012) The influence of nano-filler concentration on space charge behavior in LDPE/silica nanocomposites. Proc CSEE 32(28):177–183Google Scholar
  26. Wu Z, Ye Q, Zhou Y, Zhang L, Zhang Y (2014) Conduction current and space charge characteristics of SiO2/XLPE nanocomposites with nanoparticle surface modification. High Volt Eng 40(10):3268–3275Google Scholar
  27. Xu KK (2019) Silicon MOS optoelectronic micro-nano structure based on reverse biased PN junction. Phys Status Solidi (A) 216(7):1800868CrossRefGoogle Scholar
  28. Xue Q (2004) The influence of particle shape and size on electric conductivity of metal-polymer composites. Eur Polymer J 40(2):243–246CrossRefGoogle Scholar
  29. Yang LJ, Gu J, Bai G (2013) Study on orientation and dispersion of montmorillonite in polyethylene and its effect on electrical branches. Proc CSEE 33:176–184Google Scholar
  30. Zhang L, Zhou YX, Cui XY, Sha YC, Le TH, Ye Q, Tian JH (2014) Effect of nanoparticle surface modification on breakdown and space charge behavior of XLPE/SiO2 nanocomposites. IEEE Trans Dielectr Electr Insul 21(4):1554–1564CrossRefGoogle Scholar
  31. Zhao H, Xu MZ, Yang JM (2012) MgO/LDPE nanocomposites inhibit space charge and electrical dendrite. Proc CSEE 32:196–202Google Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Heilongjiang Provincial Key Laboratory of Dielectric Engineering, School of Electrical and Electronic EngineeringHarbin University of Science and TechnologyHarbinChina

Personalised recommendations