Modulation of vertical strain and electric field on C3As/arsenene heterostructure

  • Shivam Kansara
  • Yogesh SonvaneEmail author
  • Sanjeev K. GuptaEmail author
Original Article


Here, we have focused on electronic and optical properties of heterostructure C3As/arsenene under vertical strain and electric field using density functional theory. The phonon dispersion calculation reveals the stability of the monolayer C3As. In addition, the tunable electronic properties of heterolayer C3As/arsenene have been discussed by addressing vertical strain and electric field. The bandgaps were tuned from 0.75 to 1.6 eV as indirect-to-direct transition by accounting vertical strain and for electric field, it is decreases upto 0.25 eV. The modulation of the strain and electric field in C3As/arsenene heterolayer was investigated by the interlayer interaction strength of the layers. Moreover, the calculated optical absorption shows the strongly in UV, while weakly absorption in the visible spectrum. Therefore, the results show good structure tunablity by external strain and electric field for electronic photodetector device applications.


C3As monolayer C3As/arsenene heterostructure Band modulation Optical properties Density functional theory 



Y. A. S is thankful to the Science and Engineering Research Board (SERB), India for the financial support (Grant numbers: EEQ/2016/000217). Computational facilities from the Center for Development of Advance Computing (C-DAC) Pune are also gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

13204_2019_1034_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1518 kb)


  1. Bahuguna BP, Saini LK, Sharma RO, Tiwari B (2018) Strain and electric field induced metallization in the GaX (X = N, P, As and Sb) monolayer. Phys E 99:236–243. CrossRefGoogle Scholar
  2. Bai Y, Deng K, Kan E (2015) Electronic and magnetic properties of an AlN monolayer doped with first-row elements: a first-principles study. RSC Adv 5:18352–18358. CrossRefGoogle Scholar
  3. Balu R, Zhong X, Pandey R, Karna SP (2012) Effect of electric field on the band structure of graphene/boron nitride and boron nitride/boron nitride bilayers. Appl Phys Lett 100:052104. CrossRefGoogle Scholar
  4. Bhuyan PD, Singh D, Kansara S et al (2017) Experimental and theoretical analysis of electronic and optical properties of MgWO4. J Mater Sci 52:4934–4943. CrossRefGoogle Scholar
  5. Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49:16223–16233. CrossRefGoogle Scholar
  6. Chen X, Sun X, Yang DG et al (2016) SiGe/h-BN heterostructure with inspired electronic and optical properties: a first-principles study. J Mater Chem C 4:10082–10089. CrossRefGoogle Scholar
  7. Dai J, Zeng XC (2014) Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J Phys Chem Lett 5:1289–1293. CrossRefGoogle Scholar
  8. Dong MM, He C, Zhang WX (2017) Tunable electronic properties of arsenene and transition-metal dichalcogenide heterostructures: a first-principles calculation. J Phys Chem C 121:22040–22048. CrossRefGoogle Scholar
  9. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534. CrossRefGoogle Scholar
  10. Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502. CrossRefGoogle Scholar
  11. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. CrossRefGoogle Scholar
  12. Guo H, Lu N, Wang L et al (2014) Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain. J Phys Chem C 118:7242–7249. CrossRefGoogle Scholar
  13. Hong Y, Zhang J, Cheng Zeng X (2018) Monolayer and bilayer polyaniline C3N: two-dimensional semiconductors with high thermal conductivity. Nanoscale 10:4301–4310. CrossRefGoogle Scholar
  14. Hu Q, Wu Q, Wang H et al (2012) First-principles studies of structural and electronic properties of layered C3N phases. Phys Status Solidi (b) 249:784–788. CrossRefGoogle Scholar
  15. Huang L, Li J (2016) Tunable electronic structure of black phosphorus/blue phosphorus van der Waals p-n heterostructure. Appl Phys Lett 108:083101. CrossRefGoogle Scholar
  16. Kansara S, Singh D, Gupta SK, Sonvane Y (2016) Density functional Studies of structural, electronic and vibrational properties of palladium oxide. Solid State Commun 245:36–41. CrossRefGoogle Scholar
  17. Kansara S, Gupta SK, Sonvane Y, Lukačević I (2017a) Modeling of diameter-dependent Fe and Co ultrathin nanowires from first-principles calculations. Phys Chem Chem Phys 19:15412–15423. CrossRefGoogle Scholar
  18. Kansara S, Singh D, Gupta SK, Sonvane Y (2017b) ab initio investigation of vibrational, optical and thermodynamics properties of yttrium arsenide. J Electron Mater 46:5670–5676. CrossRefGoogle Scholar
  19. Kansara S, Gupta SK, Sonvane Y (2018a) Effect of strain engineering on 2D dichalcogenides transition metal: a DFT study. Comput Mater Sci 141:235–242. CrossRefGoogle Scholar
  20. Kansara S, Gupta SK, Sonvane Y et al (2018b) Pressure-dependent electronic and transport properties of bulk platinum oxide by density functional theory. J Electron Mater 47:1293–1301. CrossRefGoogle Scholar
  21. Kansara S, Gupta SK, Sonvane Y, Srivastava A (2018c) Switching mechanism of CO2 by alkaline earth atoms decorated on g-B4N3 nanosheet. arXiv:1805.11283 [cond-mat.mes-hall]
  22. Koda DS, Bechstedt F, Marques M, Teles LK (2017) Tuning electronic properties and band alignments of phosphorene combined with MoSe2 and WSe2. J Phys Chem C 121:3862–3869. CrossRefGoogle Scholar
  23. Li Y, Chen Z (2014) Tuning electronic properties of germanane layers by external electric field and biaxial tensile strain: a computational study. J Phys Chem C 118:1148–1154. CrossRefGoogle Scholar
  24. Li W, Wang T, Dai X et al (2017a) Effects of electric field on the electronic structures of MoS2/arsenene van der Waals heterostructure. J Alloy Compd 705:486–491. CrossRefGoogle Scholar
  25. Li W, Wang T-X, Dai X-Q et al (2017b) Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field. Phys E 88:6–10. CrossRefGoogle Scholar
  26. Li X-H, Wang B-J, Cai X-L et al (2017c) Tunable electronic properties of arsenene/GaS van der Waals heterostructures. RSC Adv 7:28393–28398. CrossRefGoogle Scholar
  27. Marten T, Isaev EI, Alling B et al (2010) Single-monolayer SiNx embedded in TiN: a first-principles study. Phys Rev B 81:212102. CrossRefGoogle Scholar
  28. Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621. CrossRefGoogle Scholar
  29. Mortazavi B (2017) Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon 118:25–34. CrossRefGoogle Scholar
  30. Mortazavi B, Rahaman O, Makaremi M et al (2017) First-principles investigation of mechanical properties of silicene, germanene and stanene. Phys E 87:228–232. CrossRefGoogle Scholar
  31. Niu X, Li Y, Zhou Q et al (2017) Arsenene-based heterostructures: highly efficient bifunctional materials for photovoltaics and photocatalytics. ACS Appl Mater Interfaces 9:42856–42861. CrossRefGoogle Scholar
  32. Ouyang B, Mi Z, Song J (2016) Bandgap transition of 2H transition metal dichalcogenides: predictive tuning via inherent interface coupling and strain. J Phys Chem C 120:8927–8935. CrossRefGoogle Scholar
  33. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. CrossRefGoogle Scholar
  34. Sano N, Kato H, Nakayama M et al (1984) Mono- and Bi-layer superlattices of GaAs and AlAs. Jpn J Appl Phys 23:L640. CrossRefGoogle Scholar
  35. Schimizu T, Yamaguchi T (2004) Band offset design with quantum-well gate insulating structures. Appl Phys Lett 85:1167–1168. CrossRefGoogle Scholar
  36. Shah J, Gupta SK, Sonvane Y, Adhikari K (2019) Computational study of electronic and optical properties of p-group atomic adsorption on α-Al2O3 (0001). Comput Theor Chem 115:101–108. CrossRefGoogle Scholar
  37. She X, Wu J, Zhong J et al (2016) Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy 27:138–146. CrossRefGoogle Scholar
  38. Shu H, Tong Y, Guo J (2017) Novel electronic and optical properties of ultrathin silicene/arsenene heterostructures and electric field effects. Phys Chem Chem Phys 19:10644–10650. CrossRefGoogle Scholar
  39. Shu H, Li Y, Niu X, Guo J (2018) Electronic structures and optical properties of arsenene and antimonene under strain and an electric field. J Mater Chem C 6:83–90. CrossRefGoogle Scholar
  40. Singh D, Kansara S, Gupta SK, Sonvane Y (2018) Single layer of carbon phosphide as an efficient material for optoelectronic devices. J Mater Sci 53:8314–8327. CrossRefGoogle Scholar
  41. Song Y, Li D, Mi W et al (2016) Electric field effects on spin splitting of two-dimensional van der Waals arsenene/FeCl2 heterostructures. J Phys Chem C 120:5613–5618. CrossRefGoogle Scholar
  42. Tamleh S, Rezaei G, Jalilian J (2018) Stress and strain effects on the electronic structure and optical properties of ScN monolayer. Phys Lett A 382:339–345. CrossRefGoogle Scholar
  43. Tran V, Soklaski R, Liang Y, Yang L (2014) Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B 89:235319. CrossRefGoogle Scholar
  44. Wang G, Pandey R, Karna SP (2016) Carbon phosphide monolayers with superior carrier mobility. Nanoscale 8:8819–8825. CrossRefGoogle Scholar
  45. Wang H, Wu H, Yang J (2017) C3N: a two dimensional semiconductor material with high stiffness, superior stability and bending Poisson’s effect. arXiv:1703.08754 [cond-mat.mtrl-sci]
  46. Wu X, Dai J, Zhao Y et al (2012) Two-dimensional boron monolayer sheets. ACS Nano 6:7443–7453. CrossRefGoogle Scholar
  47. Wunderlich W, Ohta H, Koumoto K (2008) Effective mass calculations of SrTiO3-based superlattices for thermoelectric applications lead to new layer design. arXiv:0808.1772 [cond-mat.mtrl-sci]
  48. Xia C, Peng Y, Wei S, Jia Y (2013) The feasibility of tunable p-type Mg doping in a GaN monolayer nanosheet. Acta Mater 61:7720–7725. CrossRefGoogle Scholar
  49. Xia F, Wang H, Xiao D et al (2014) Two-dimensional material nanophotonics. Nat Photonics 8:899–907. CrossRefGoogle Scholar
  50. Xu L, Huang W-Q, Hu W et al (2017) Two-dimensional MoS2-graphene-based multilayer van der Waals heterostructures: enhanced charge transfer and optical absorption, and electric-field tunable dirac point and band gap. Chem Mater 29:5504–5512. CrossRefGoogle Scholar
  51. Yang S, Li W, Ye C et al (2017) C3N—a 2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties. Adv Mater 29:1605625. CrossRefGoogle Scholar
  52. Zeng X, Ye L, Yu S et al (2015) Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. Nanoscale 7:6774–6781. CrossRefGoogle Scholar
  53. Zeng H, Zhao J, Cheng A-Q et al (2018) Tuning electronic and optical properties of arsenene/C3N van der Waals heterostructure by vertical strain and external electric field. Nanotechnology 29:075201. CrossRefGoogle Scholar
  54. Zhang S, Yan Z, Li Y et al (2015) Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angew Chem 127:3155–3158. CrossRefGoogle Scholar
  55. Zhang F, Li W, Dai X (2017) Electric-field tunable electronic structure in WSe2/arsenene van der Waals heterostructure. Superlattices Microstruct 104:518–524. CrossRefGoogle Scholar
  56. Zhou X, Feng W, Guan S et al (2017) Computational characterization of monolayer C3N: a two-dimensional nitrogen-graphene crystal. J Mater Res 32:2993–3001. CrossRefGoogle Scholar
  57. Zhou L, Guo Y, Zhao J (2018) GeAs and SiAs monolayers: novel 2D semiconductors with suitable band structures. Phys E 95:149–153. CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Advanced Materials Lab, Department of Applied PhysicsS.V. National Institute of TechnologySuratIndia
  2. 2.Computational Materials and Nanoscience Group, Department of Physics and ElectronicsSt. Xavier’s CollegeAhmedabadIndia

Personalised recommendations