Synthesis of coaxial TiO2/In2O3 nanowire assembly using glancing angle deposition for wettability application

  • Pheiroijam Pooja
  • Bijit Choudhuri
  • V. Saranyan
  • P. ChinnamuthuEmail author
Original Article


Coaxial TiO2/In2O3 nanowire (NW) assembly, TiO2 NW and In2O3 NW were synthesized incorporating glancing angle deposition technique inside electron beam evaporator and their structural and optical properties were analyzed. The field emission scanning electron microscopy and transmission electron microscopy confirmed the growth of TiO2/In2O3 NW. X-ray diffraction confirmed the polycrystalline nature of the deposited TiO2/In2O3 NW structure. The surface roughness was 2.12 nm, 6 nm and 6.35 nm for TiO2 NW, In2O3 NW and TiO2/In2O3 NW, respectively using atomic force microscope. The TiO2/In2O3 NW, bare TiO2 NW and In2O3 NW showed water contact angle (CA) of 129°, 68° and 123°, respectively. On exposure to UV light illumination, the surface CA of coaxial TiO2/In2O3 NW, TiO2 NW and In2O3 NW changed to nearly 10°, 30° and 71°, respectively in 1 h. TiO2/In2O3 NW, TiO2 NW and In2O3 NW CAs changed with wettability transition rate of 1.2 × 10−3 degree−1 min−1, 3.2 × 10−4 degree−1 min−1 and 9.2 × 10−5 degree−1 min−1, respectively. There is improvement in photo-induced wettability switching properties of coaxial TiO2/In2O3 NW compared to TiO2 NW and In2O3 NW. This improvement is due to the interfacial surface morphology modification between TiO2 and In2O3 and efficient interaction of separated photogenerated charge carriers with water molecules to adsorb on the surface. On account of these, the change in wettability of heterostructure surface on interaction with UV light can give prospective applications in smart films as antifogging and self-cleaning surfaces.


Coaxial Nanowire GLAD TiO2 In2O3 Wettability 



The authors are grateful and would like to thank and acknowledge SAIF, NEHU Shillong for TEM analysis, Dr. D. D. Purkayastha of Dept. of Physics NIT Nagaland for CA measurement and UV–visible absorption analysis and NIT Nagaland for financial assistance.


  1. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271. CrossRefGoogle Scholar
  2. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551. CrossRefGoogle Scholar
  3. Chaguetmi S, Mammeri F, Nowak S, Decorse P, Lecoq H, Gaceur M, Naceur JB (2013) Photocatalytic activity of TiO2 nanofibers sensitized with ZnS quantum dots. RSC Adv 3:2572–2580. CrossRefGoogle Scholar
  4. Chang M, Song Y, Sheng HZY, Zheng K, Zhou X, Zou H (2015) Hydrothermal assisted sol-gel synthesis and multisite luminescent properties of anatase TiO2:Eu3+ nanorods. RSC Adv 5:59314–59319. CrossRefGoogle Scholar
  5. Chen S, Zhang S, Galluzzi M, Li F, Zhang X, Yang X, Liu X, Cai X, Zhu X, Du B, Li J, Huang P (2019) Insight into multifunctional polyester fabrics finished by one-step ecofriendly strategy. Chem Eng J 358:634–642. CrossRefGoogle Scholar
  6. Deng S, Verbruggen SW, He Z, Cott DJ, Vereecken PM, Martens JA, Bals S, Lenaerts S, Detavernier C (2014) Atomic layer deposition-based synthesis of photoactive TiO2 nanoparticle chains by using carbon nanotubes as sacrificial templates. RSC Adv 4:11648–11653. CrossRefGoogle Scholar
  7. Du Y, Huang Z, Wub S, Xiong K, Zhang X, Zheng B, Nadimicherla R, Fua R, Wu D (2018) Preparation of versatile yolk-shell nanoparticles with a precious metal yolk and a microporous polymer shell for high-performance catalysts and antibacterial agents. Polymer 137:195–200. CrossRefGoogle Scholar
  8. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 6:515–582. CrossRefGoogle Scholar
  9. Ganesh VA, Nair AS, Raut HK, Walsh TM, Ramakrishna S (2012) Photocatalytic superhydrophilic TiO2 coating on glass by electrospinning. RSC Adv 2:2067–2072. CrossRefGoogle Scholar
  10. Heng H, Gan Q, Menga P, Liu X (2016) H3PW12O40/TiO2–In2O3: a visible light driven type II heterojunction photocatalyst for the photocatalytic degradation of imidacloprid. RSC Adv 6:73301–73307. CrossRefGoogle Scholar
  11. Kenanakis G, Vernardou D, Katsarakis N (2012) Light-induced self-cleaning properties of ZnO nanowires grown at low temperatures. Appl Catal A Gen 411:7–14. CrossRefGoogle Scholar
  12. Leng K, Mai W, Zhang X, Liu R, Lin X, Huang J, Lou H, Xie Y, Fu R, Wu D (2018) Construction of functional nanonetwork-structured carbon nitride with Au nanoparticle yolks for highly efficient photocatalytic applications. Chem Commun 54:7159–7162. CrossRefGoogle Scholar
  13. Miyauchi M, Nakajima A, Watanabe T, Hashimoto K (2002) Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem Mater 14:2812–2816. CrossRefGoogle Scholar
  14. Mondal A, Shougaijam B, Goswami T, Dhar JC, Singh NK, Choudhury S, Chattopadhay KK (2014) Structural and optical properties of glancing angle deposited In2O3 columnar arrays and Si/In2O3 photodetector. Appl Phys A 115:353–358. CrossRefGoogle Scholar
  15. Mukherjee S, Gall D (2012) Structure zone model for extreme shadowing conditions. Thin Solid Films 527:158–163. CrossRefGoogle Scholar
  16. Noh SI, Bae K-N, Ahn H-J, Seong T-Y (2013) Improved efficiency of dye-sensitized solar cells through fluorine-doped TiO2 blocking layer. Ceram Int 39:8097–8101. CrossRefGoogle Scholar
  17. Park S, Kim S, Sun G-J, Lee C (2015) Synthesis, structure, and ethanol gas sensing properties of In2O3 nanorods decorated with Bi2O3 nanoparticles interfaces. ACS Appl Mater 7:8138–8146. CrossRefGoogle Scholar
  18. Peng XS, Wang YW, Zhang J, Wang XF, Zhao LX, Meng GW, Zhang LD (2002) Large-scale synthesis of In2O3 nanowires. Appl Phys A 74:437–439. CrossRefGoogle Scholar
  19. Powell MJ, Quesada-Cabrera R, Taylor A, Teixeira D, Papakonstantinou I, Palgrave RG, Sankar G et al (2016) Intelligent multifunctional VO2/SiO2/TiO2 coatings for self-cleaning, energy-saving window panels. Chem Mater 28:1369–1376. CrossRefGoogle Scholar
  20. Purkayastha DD, Pandeeswari R, Madhurima V, Krishna MG (2013) Metal buffer layer mediated wettability of nanostructured TiO2 films. Mater Lett 92:151–153. CrossRefGoogle Scholar
  21. Rajeshwar K, Osugi ME, Chanmaneec W, Chenthamarakshana CR, Zanoni MVB, Kajitvichyanukul P, Krishna-Ayer R (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. Photochem Photobiol C 9:171–192. CrossRefGoogle Scholar
  22. Selim MS, El-Safty SA, El-Sockary MA, Hashem AI, AboElenien OM, El-Saeed AM, Fatthallah NA (2016) Smart photo-induced silicone/TiO2 nanocomposites with dominant [110] exposed surfaces for self-cleaning foul-release coatings of ship hulls. Mater Des 101:218–225. CrossRefGoogle Scholar
  23. Su Q, Lu Y, Liu S, Zhang X, Lin Y, Fu R, Wu D (2018) Nano network-structured yolk-shell FeS2@C as high-performance cathode materials for Li-ion batteries. Carbon 140:433–440. CrossRefGoogle Scholar
  24. Talinungsang NP, Purkayastha DD, Krishna MG (2018) Dopant controlled photoinduced hydrophilicity and photocatalytic activity of SnO2 thin films. Appl Surf Sci 447:724–731. CrossRefGoogle Scholar
  25. Tonooka K, Kikuchi N (2013) Super-hydrophilic and solar-heat-reflective coatings for smart windows. Thin Solid Films 532:147–150. CrossRefGoogle Scholar
  26. Top I, Binions R, Warwick MEA, Dunnill CW, Holdynski M, Abrahams I (2018) VO2/TiO2 bilayer films for energy efficient windows with multifunctional properties. J Mater Chem C 6:4485–4493. CrossRefGoogle Scholar
  27. Weiher RL, Ley RP (1966) Optical properties of indium oxide. J Appl Phys 37:299–302CrossRefGoogle Scholar
  28. Xiong J, Das SN, Kim S, Lim J, Choi H, Myoung J-M (2010) Photo-induced hydrophilic properties of reactive RF magnetron sputtered TiO2 thin films. Surf Coat Technol 204:3436–3442. CrossRefGoogle Scholar
  29. Xu C, Yuan Y, Yuan R, Fu X (2013) Enhanced photocatalytic performances of TiO2-graphene hybrids on nitro-aromatics reduction to amino-aromatics. RSC Adv 3:18002–18008. CrossRefGoogle Scholar
  30. Yasui M, Katagiri K, Yamanaka S, Inumaru K (2012) Molecular selective photocatalytic decomposition of alkyl anilines by crystalline TiO2 particles and their nanocomposites with mesoporous silica. RSC Adv 2:11132–11137. CrossRefGoogle Scholar
  31. Zhou CM, Gall D (2007) Growth competition during glancing angle deposition of nanorod honeycomb arrays. Appl Phys Lett 90:093103. CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Pheiroijam Pooja
    • 1
  • Bijit Choudhuri
    • 1
  • V. Saranyan
    • 2
  • P. Chinnamuthu
    • 1
    Email author
  1. 1.Department of Electronics and Communication EngineeringNational Institute of Technology NagalandDimapurIndia
  2. 2.Department of Corrosion and Material ProtectionCouncil of Scientific and Industrial Research-Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations