Advertisement

Applied Nanoscience

, Volume 9, Issue 1, pp 113–117 | Cite as

Minimizing energy losses by introducing periodic pinning centers on superconducting films

  • M. KamranEmail author
  • Syed Rameez Naqvi
  • Tallha Akram
  • Amad ud din
  • S. K. He
  • M. Ikram
  • M. Usman
  • Sajjad Ali Haider
Original Article
  • 2 Downloads

Abstract

We study vortex behavior in a set of samples of a rectangular array of antidots on a high-quality metallic superconducting Nb film. For this purpose, we measure magneto-resistance properties of some samples with varying dimensions, and also varying periods of antidots in the array. In the first phase, we characterize magneto-resistance curves of the samples with large period having weak pinning effect. The vortex array, due to the interstitial vortices being dominant, rapidly becomes disorder causing high differential resistance. Later, we measure the same curves with smaller period of the samples, and observe a strong pinning effect mainly due to the fact that the vortex array remains in order. We demonstrate that by decreasing the period of samples, energy loss in nano-engineered thin films may be minimized.

Keywords

Mixed state Energy Vortices Critical fields Antidots 

Notes

References

  1. Baert M, Metlushko VV, Jonckheere R, Moshchalkov VV, Bruynseraede Y (1995) Composite flux-line lattices stabilized in superconducting films by a regular array of artificial defects. Phys Rev Lett 74(16):3269CrossRefGoogle Scholar
  2. Berdiyorov GR, Yu SH, Xiao ZL, Peeters FM, Hua J, Imre A, Kwok WK (2009) Effect of sample geometry on the phase boundary of a mesoscopic superconducting loop. Phys Rev B 80(6):064511CrossRefGoogle Scholar
  3. Bezryadin A, Pannetier B (1995) Nucleation of superconductivity in a thin film with a lattice of circular holes. J Low Temp Phys 98(3–4):251–268CrossRefGoogle Scholar
  4. Bezryadin A, Pannetier B (1996) Role of edge superconducting states in trapping of multi-quanta vortices by microholes. Application of the bitter decoration technique. J Low Temp Phys 102(1–2):73–94CrossRefGoogle Scholar
  5. Cuadra-Solis PJ, Hernndez JM, Garcia-Santiago A, Tejada J, Vanacken J, Moshchalkov VV (2008) High-frequency vortex matching effects in Pb thin films with a periodic array of antidots. Phys C Supercond Appl 468(7–10):777–780CrossRefGoogle Scholar
  6. Grigorenko AN, Howells GD, Bending SJ, Bekaert J, Van Bael MJ, Van Look L, Moshchalkov VV, Bruynseraede Y, Borghs G, Kaya II, Stradling RA (2001) Direct imaging of commensurate vortex structures in ordered antidot arrays. Phys Rev B 63(5):052504CrossRefGoogle Scholar
  7. Hastings MB, Reichhardt CO, Reichhardt C (2003) Ratchet cellular automata. Phys Rev Lett 90(24):247004CrossRefGoogle Scholar
  8. Iye Y, Kuramochi E, Hara M, Endo A, Katsumoto S (2004) Hofstadter butterflies in a modulated magnetic field: superconducting wire network with magnetic decoration. Phys Rev B 70(14):144524CrossRefGoogle Scholar
  9. Kamran M, Anis-ur-Rehman M, Mansoor K, He SK, Qiu XG (2011) Temperature and current dependent matching fields in superconducting NbN film. J Supercond Nov Magn 24(1–2):919–921CrossRefGoogle Scholar
  10. Little WA, Parks RD (1962) Observation of quantum periodicity in the transition temperature of a superconducting cylinder. Phys Rev Lett 9(1):9CrossRefGoogle Scholar
  11. Martin JI, Vlez M, Hoffmann A, Schuller IK, Vicent JL (2000) Temperature dependence and mechanisms of vortex pinning by periodic arrays of Ni dots in Nb films. Phys Rev B 62(13):9110CrossRefGoogle Scholar
  12. McMillan WL (1968) Transition temperature of strong-coupled superconductors. Phys Rev 167(2):331CrossRefGoogle Scholar
  13. Milosevic MV, Berdiyorov GR, Peeters FM (2007) Fluxonic cellular automata. Appl Phys Lett 91(21):212501CrossRefGoogle Scholar
  14. Mkrtchyan GS, Shmidt VV (1972) Interaction between a cavity and a vortex in a superconductor of the second kind. Sov J Exp Theor Phys 34:195Google Scholar
  15. Moshchalkov VV, Baert M, Metlushko VV, Rosseel E, Van Bael MJ, Temst K, Jonckheere R, Bruynseraede Y (1996) Magnetization of multiple-quanta vortex lattices. Phys Rev B 54(10):7385CrossRefGoogle Scholar
  16. Moshchalkov VV, Baert M, Metlushko VV, Rosseel E, Van Bael MJ, Temst K, Jonckheere R, Jonckheere R (1998) Pinning by an antidot lattice: the problem of the optimum antidot size. Phys Rev B 57(6):3615CrossRefGoogle Scholar
  17. Pannetier B, Chaussy J, Rammal R, Villegier JC (1984) Experimental fine tuning of frustration: two-dimensional superconducting network in a magnetic field. Phys Rev Lett 53(19):1845CrossRefGoogle Scholar
  18. Puig T, Rosseel E, Van Look L, Van Bael MJ, Moshchalkov VV, Bruynseraede Y, Jonckheere R (1998) Vortex configurations in a Pb/Cu microdot with a $2\times 2$ antidot cluster. Phys Rev B 58(9):5744CrossRefGoogle Scholar
  19. Reichhardt C, Reichhardt CO (2008) Moving vortex phases, dynamical symmetry breaking, and jamming for vortices in honeycomb pinning arrays. Phys Rev B 78(22):224511CrossRefGoogle Scholar
  20. Rosseel E, Puig T, Baert M, Van Bael MJ, Moshchalkov VV, Bruynseraede Y (1997) Upper critical field of Pb films with an antidot lattice. Phys C Supercond 282:1567–1568CrossRefGoogle Scholar
  21. Sadovskyy IA, Wang YL, Xiao ZL, Kwok WK, Glatz A (2017) Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films. Phys Rev B 95(7):075303CrossRefGoogle Scholar
  22. Silhanek AV, Van Look L, Raedts S, Jonckheere R, Moshchalkov VV (2003) Guided vortex motion in superconductors with a square antidot array. Phys Rev B 68(21):214504CrossRefGoogle Scholar
  23. Stoll OM, Montero MI, Guimpel J, kerman JJ, Schuller IK (2002) Hysteresis and fractional matching in thin Nb films with rectangular arrays of nanoscaled magnetic dots. Phys Rev B 65(10):104518CrossRefGoogle Scholar
  24. Tinkham M (1996) Introduction to superconductivity. Courier Corporation, North ChelmsfordGoogle Scholar
  25. Vizarim NP, Carlone M, Verga LG, Venegas PA (2017) Commensurability effects in the critical forces of a superconducting film with Kagom pinning array at submatching fields. Eur Phys J B 90(9):169CrossRefGoogle Scholar
  26. Welp U, Xiao ZL, Jiang JS, Vlasko-Vlasov VK, Bader SD, Crabtree GW, Liang J, Chik H, Xu JM (2002) Superconducting transition and vortex pinning in Nb films patterned with nanoscale hole arrays. Phys Rev B 66(21):212507CrossRefGoogle Scholar
  27. Zechner G, Jausner F, Haag LT, Lang W, Dosmailov M, Bodea MA, Pedarnig JD (2017) Hysteretic vortex-matching effects in high-Tc superconductors with nanoscale periodic pinning landscapes fabricated by He ion-beam projection. Phys Rev Appl 8(1):014021CrossRefGoogle Scholar
  28. Zhang WJ, He SK, Liu HF, Xue GM, Xiao H, Li BH, Wen ZC, Han XF, Zhao SP, Gu CZ, Qiu XG (2012) Edge superconducting state in Nb thin film with rectangular arrays of antidots. arXiv preprint arXiv:1203.0269Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. Kamran
    • 1
    Email author
  • Syed Rameez Naqvi
    • 1
  • Tallha Akram
    • 1
  • Amad ud din
    • 2
  • S. K. He
    • 3
  • M. Ikram
    • 4
  • M. Usman
    • 5
  • Sajjad Ali Haider
    • 1
  1. 1.Department of Electrical and Computer EngineeringCOMSATS University IslamabadWah CantonmentPakistan
  2. 2.Advanced Electronics System Lab, Department of Electronic EngineeringFatima Jinnah Women UniversityRawalpindiPakistan
  3. 3.Beijing National Laboratory for Condensed Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.Department of PhysicsHazara UniversityMansehraPakistan
  5. 5.Department of Engineering SciencesGhulam Ishaq Khan Institute of Engineering Sciences and TechnologyTopiPakistan

Personalised recommendations