Advertisement

Preparation of carboxy-methyl cellulose-capped nanosilver particles and their antimicrobial evaluation by an automated device

  • Prasanta Kumar Maiti
  • Archi Ghosh
  • Rehana Parveen
  • Arpit Saha
  • Mahua Ghosh Choudhury
Original Article
  • 9 Downloads

Abstract

Colloidal solution of nano silver particles (AgNPs) have been prepared using carboxymethyl cellulose as the stabilizing agent and dextrose as the reducing agent. It is considered bio-friendly, as all ingredients at much higher concentrations are used on eye as medicine. AgNPs thus generated are triangular with 9.5 nm size. MIC values of AgNPs and equivalent ionic silver against different multi-drug resistant strain bacteria and yeast are determined by microdilution method. Biological parameters for nano conversion are indicated by 128–256-fold higher sensitivity. Selective range synergisms for 1/4th MIC AgNPs with battery of antimicrobial agents are indicated by automated susceptibility testing device, keeping a negative control. Much lower MICs for different resistant antibiotics in combination with AgNPs are noted for all test organisms. This indicates scope for using a tolerable concentration of nanoantimicrobials either alone or in combination with an empirically chosen antibiotic for managing surface infections of eye or skin.

Keywords

Silver nanoparticles Carboxy-methyl cellulose Synergism Topical anti-microbial Automated susceptibility testing 

Notes

Author contributions

PKM conceived the project and designed the experiments dealing with synthesis, storage of eye tolerable AgNPs and new methods for determining anti-microbial properties. AG and RP carried out experiments dealing with synthesis, characterizations and microbiological experiments with AgNPs. MRC, AG and AS carried out the electron microscopic studies and experiments related to physical characterization of AgNPs. All authors were involved with interpretation of obtained results, preparation and editing the manuscript.

Compliance with ethical standards

Conflict of interest

Applied for Patent in India by Prasanta Kumar Maiti; Application no. 201831009290, Date of publication 6th, April, 2018.

Supplementary material

13204_2018_914_MOESM1_ESM.pdf (199 kb)
Supplementary material 1 (PDF 198 KB)
13204_2018_914_MOESM2_ESM.pdf (216 kb)
Supplementary material 2 (PDF 216 KB)
13204_2018_914_MOESM3_ESM.pdf (258 kb)
Supplementary material 3 (PDF 257 KB)
13204_2018_914_MOESM4_ESM.pdf (253 kb)
Supplementary material 4 (PDF 252 KB)
13204_2018_914_MOESM5_ESM.pdf (355 kb)
Supplementary material 5 (PDF 355 KB)
13204_2018_914_MOESM6_ESM.pdf (189 kb)
Supplementary material 6 (PDF 188 KB)
13204_2018_914_MOESM7_ESM.pdf (195 kb)
Supplementary material 7 (PDF 195 KB)
13204_2018_914_MOESM8_ESM.pdf (345 kb)
Supplementary material 8 (PDF 345 KB)
13204_2018_914_MOESM9_ESM.pdf (335 kb)
Supplementary material 9 (PDF 335 KB)
13204_2018_914_MOESM10_ESM.pdf (328 kb)
Supplementary material 10 (PDF 328 KB)
13204_2018_914_MOESM11_ESM.pdf (344 kb)
Supplementary material 11 (PDF 344 KB)

References

  1. Abdel-Halim ES, Alanazi HH, Al-Deyab SS (2015) Utilization of hydroxypropyl-carboxymethyl cellulose in synthesis of silver nanoparticles. Int J Biol Macromol 75:467–473CrossRefGoogle Scholar
  2. Akter M, Sikder MT, Rahman MM, Ullah AKMA, Hossain KFB, Banik S et al (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16CrossRefGoogle Scholar
  3. Alahmadi NS, Betts JW, Heinze T, Kelly SM, Koschella A, Wadhawan JD (2018) Synthesis and antimicrobial effects of highly dispersed, cellulose-stabilized silver/cellulose nanocomposites. RSC Adv 8: 3646–3656.  https://doi.org/10.1039/c7ra12280brsc.li/rsc-advances CrossRefGoogle Scholar
  4. Alshareef A, Laird K, Cross RBM (2017) Shape-dependent antibacterial activity of silver nanoparticles on Escherichia coli and Enterococcus faecium bacterium. Appl Surf Sci 424:310–315CrossRefGoogle Scholar
  5. Ansari MA, Khan AA, Cameotra SS, Alzohairy MA (2015) Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J Med Microbiol 33:101–109CrossRefGoogle Scholar
  6. Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA (2007) Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 127:1701–1712CrossRefGoogle Scholar
  7. Chakrabarti S, Islam J, Hazarika H, Mazumder B, Raju PS, Chattopadhyay P (2018) Safety profile of silver sulfadiazine-bfgf-loaded hydrogel for partial thickness burn wounds. Cutan Ocul Toxicol 37:258–266CrossRefGoogle Scholar
  8. Feng He and Dongye Zhao (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41(17):6216–6221.  https://doi.org/10.1021/es0705543 CrossRefGoogle Scholar
  9. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents Molecules 20:8856–8874.  https://doi.org/10.3390/molecules20058856 CrossRefGoogle Scholar
  10. Fung MC, Bowen DL (1996) Silver products for medical indications:risk-benefit assessment. J Toxicol Clin Toxicol 34:119–126.  https://doi.org/10.3109/15563659609020246 CrossRefGoogle Scholar
  11. Garza-Ocañas L, Ferrer DA, Burt J, Diaz-Torres LA, Ramirez Cabrera M, Rodriguez VT et al (2010) Biodistribution and long-term fate of silver nanoparticles functionalized with bovine serum albumin in rats. Metallomics 2:204–210CrossRefGoogle Scholar
  12. Hamouda T, Myc A, Donovan B, Shih A, Reuter J, Baker J (2001) A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol Res 156(1):1–7CrossRefGoogle Scholar
  13. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:131–133CrossRefGoogle Scholar
  14. Hwang IS, Choi H, Kim KJ, Lee DG (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61:1719–1726CrossRefGoogle Scholar
  15. Kalaivani R, Maruthupandy M, Muneeswaran T, Hameedha Beevi A, Anand M, Ramakritinan CM, Kumaraguru AK (2018) Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front Lab Med 2:30–35CrossRefGoogle Scholar
  16. Kamaleddin MA (2017) Nano-ophthalmology: applications and considerations. Nanomedicine NBM 13:1459–1472.  https://doi.org/10.1016/j.nano.2017.02.007 CrossRefGoogle Scholar
  17. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanismof silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122.  https://doi.org/10.1007/s00253-009-2159-5 CrossRefGoogle Scholar
  18. Lustosa AKMF, de Jesus Oliveira AC, Quelemes PV, Plácido A, da Silva FV, Oliveira IS et al (2017) In situ synthesis of silver nanoparticles in a hydrogel of carboxymethyl cellulose with phthalated-cashew gum as a promising antibacterial and healing agent. Int J Mol Sci.  https://doi.org/10.3390/ijms18112399 CrossRefGoogle Scholar
  19. Maiti PK, Haldar J, Mukherjee P, Dey R (2013) Anaerobic culture on growth efficient bi-layered culture plate in a modified candle jar using a rapid and slow combustion system. Indian J Med Microbiol 31:173–176Google Scholar
  20. Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69(7):4278CrossRefGoogle Scholar
  21. Mims JL Jr (1951) Methyl cellulose solution for ophthalmic use. AMA Arch Ophthalmol 46(6):664–665.  https://doi.org/10.1001/archopht.1951.01700020678008 CrossRefGoogle Scholar
  22. Netchareonsirisuk P, Puthong S, Dubas S, Palaga T, Komolpis K (2016) Effect of capping agents on the cytotoxicity of silver nanoparticles in human normal and cancer skin cell lines. J Nanopart Res 18:322–332CrossRefGoogle Scholar
  23. Ordzhonikidze CG, Ramaiyya LK, Egorova EM, Rubanovich AV (2009) Genotoxic effects of silvernanoparticles on mice in vivo. Actanaturae 3:99–101Google Scholar
  24. PanáˇcekA SmékalováM, KilianováM PrucekR, BogdanováK VeˇceˇrováR et al (2016) Strong and nonspecific synergistic antibacterial efficiency of antibiotics combined with silver nanoparticles at very low concentrations showing no cytotoxic effect. Molecules 21:26.  https://doi.org/10.3390/molecules21010026 CrossRefGoogle Scholar
  25. Papakostas D, Rancan F, Sterry W, BlumePeytavi U (2011) Vogt A nanoparticles in dermatology. Arch Dermatol Res 303:533–550CrossRefGoogle Scholar
  26. Peulen TO, Wilkinson KJ (2011) Diffusion of nanoparticles in a biofilm. Environ Sci Techno l 45(8):3367–3373CrossRefGoogle Scholar
  27. Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767–2781.  https://doi.org/10.2147/IJN.S24805 CrossRefGoogle Scholar
  28. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silvernanoparticles. Nanotechnology 18(22):225103.  https://doi.org/10.1088/0957-4484/18/22/225103 CrossRefGoogle Scholar
  29. Song K, Lee S, Park T, Lee B (2009) Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J Chem Eng 26:153–155CrossRefGoogle Scholar
  30. Song JK, Lee K, Park HW, Hyon JY, Oh SW, Bae WK et al (2017) Efficacy of carboxymethylcellulose and hyaluronate in dry eye disease: a systematic review and meta-analysis. Korean J Fam Med 38:2–7.  https://doi.org/10.4082/kjfm.2017.38.1.2 CrossRefGoogle Scholar
  31. Tauran Y, Brioude A, Coleman AW, Rhimi M, Kim B (2013) Molecular recognition by gold, silver and copper nanoparticles. World JBiol Chem 4(3):35–63CrossRefGoogle Scholar
  32. Waris A, Nagpal G, Akhtar N (2014) Use of nanotechnology in ophthalmology. Am J Drug Deliv Ther 1(2):73–76Google Scholar
  33. Wong KKY, Liu X (2010) Silver nanoparticles-the real ‘’silver bullet’’in clinical medicine. Med Chem Commun 1:125–131.  https://doi.org/10.1039/c0md00069h.%5D CrossRefGoogle Scholar
  34. Wright JB, Lam K, Hansen D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Inf Cont 27:344–350CrossRefGoogle Scholar
  35. Y.Hsin,CChen, S, Huang T, Shih P, Lai, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNKdependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179(3):130–139CrossRefGoogle Scholar
  36. Yan X, He B, Liu L, Qu G, Shi J, Hu L, Jiang G (2018) Antibacterial mechanism of silver nanoparticles in pseudomonas aeruginosa: proteomics approach. Metallomics 10:557–564CrossRefGoogle Scholar
  37. You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H (2012) The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39:9193–9201.  https://doi.org/10.1007/s11033-012-1792-8PMID:22722996 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Prasanta Kumar Maiti
    • 1
  • Archi Ghosh
    • 1
  • Rehana Parveen
    • 1
  • Arpit Saha
    • 1
  • Mahua Ghosh Choudhury
    • 2
  1. 1.Institute of Post-Graduate Medical Education and ResearchKolkataIndia
  2. 2.School of Materials science and Nano TechnologyJadavpur UniversityKolkataIndia

Personalised recommendations