Advertisement

Applied Nanoscience

, Volume 9, Issue 1, pp 119–133 | Cite as

Surface segregation in binary Cu–Ni and Au–Co nanoalloys and the core–shell structure stability/instability: thermodynamic and atomistic simulations

  • V. M. SamsonovEmail author
  • I. V. Talyzin
  • A. Yu. Kartoshkin
  • S. A. Vasilyev
Original Article
  • 25 Downloads

Abstract

An approach combining thermodynamic and atomistic (molecular dynamics) simulations has been applied to predict surface segregation in binary metal A–B nanoparticles (Cu–Ni and Au–Co ones). The thermodynamic simulation method based on the Butler equation was additionally justified and extended to stationary non-equilibrium states using the energetic variant of non-equilibrium thermodynamics. The results of thermodynamic and atomistic simulations agree with each other predicting segregation of Cu atoms to the surface of Cu–Ni nanoparticles and the surface segregation of Au in binary Au–Co nanoparticles. A hypothesis is put forward on correlation between stability/instability of A (core)/B (shell) nanostructures and the spontaneous surface segregation of one of the components of binary A–B nanoparticles. In accordance with this hypothesis, the core–shell structure A (core)/B (shell) will be stable if the component B spontaneously segregates to the surface of binary A–B nanoparticles. At the same time, a trend to the surface segregation of this component should result in the instability of the B (core)/A (shell) structures. The hypothesis in question agrees with our molecular dynamics results and with available experimental data on stability/instability of Co (core)/Au (shell) and Au (core)/Co (shell) nanostructures.

Keywords

Surface segregation Cu–Ni nanoalloys Au–Co nanoalloys Core–shell structure Thermodynamic simulation Molecular dynamics simulation 

Notes

Acknowledgements

The work was supported by the Ministry of Education and Science of the Russian Federation in the framework of the State Program in the Field of the Research Activity (no. 3.5506.2017/BP) and by Russian Foundation for Basic Research (Project no. 18-03-00132).

References

  1. Alchagirov AB, Alchairov BB, Taova TM, Khokonov KhB (2001) Surface energy and surface tension of solid and liquid metals. Recommended values. Trans Join Weld Res Inst Osaka Univ 30:287–291Google Scholar
  2. Bhattarai N, Casillas G, Khanal S, Bahena D, Velazquez-Salazar JJ, Mejia S, Ponce A, Dravid VP, Whetten RL, Mariscal MM, Jose-Yacaman M (2013) Structure and composition of Au/Co magneto-plasmonic nanoparticles. MRS Commun 3:177–183.  https://doi.org/10.1557/mrc.2013.30 CrossRefGoogle Scholar
  3. Brongersma HH, Sparnay MJ, Buck TM (1978) Surface segregation in Cu–Ni and Cu–Pt alloys; a comparison of low-energy ion scattering results with theory. Surf Sci 71:657–678CrossRefGoogle Scholar
  4. Butler JAV (1932) Thermodynamics of the surface of solutions. Proc R Soc A135:348–363.  https://doi.org/10.1098/rspa.1932.0040 CrossRefGoogle Scholar
  5. Calagua A, Alarcon H, Paraguay F, Rodriguez J (2015) Synthesis and characterization of bimetallic gold–silver core–shell nanoparticles: a green approach. Adv Nanoparticles 4:116–121.  https://doi.org/10.4236/anp.2015.44013 CrossRefGoogle Scholar
  6. Castro T, Reifenberger R, Choi E, Andres RP (1990) Size-dependent melting temperature of individual nanometer-sized metallic clusters. Phys Rev B 42:8548–8556.  https://doi.org/10.1103/PhysRevB.42.8548 CrossRefGoogle Scholar
  7. Delogu F (2005) Thermodynamics on the nanoscale. J Phys Chem B 109:21938–21941.  https://doi.org/10.1021/jp0554902 CrossRefGoogle Scholar
  8. Dick K, Dhanasekaran T, Zhang Z, Meisel D (2002) Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc 124:2312–2317.  https://doi.org/10.1021/ja017281a CrossRefGoogle Scholar
  9. Dong HQ, Jin S, Zhang LG, Wang JS, Tao XM, Liu HS, Jin ZP (2009) Thermodynamic assessment of the Au–Co–Sn ternary system. J Electron Mater 38:2158–2169.  https://doi.org/10.1007/s11664-009-0874-4 CrossRefGoogle Scholar
  10. Du Y, Huang Z, Wu S, Xiong K, Zhang X, Zheng B, Nadimicherla R, Fu R, Wu D (2018) Preparation of versatile yolk-shell nanoparticles with a precious metal yolk and a microporous polymer shell for high-performance catalysts and antibacterial agents. Polymer 137:195–200.  https://doi.org/10.1016/j.polymer.2017.12.069 CrossRefGoogle Scholar
  11. Ebeling W (1976) Strukturbildung bei irreversiblen Prozessen: Eine Einführung in die Theorie dissipativer Strukturen. Teubner, LeipzigGoogle Scholar
  12. Feistel R, Ebeling W (2011) Physics of self-organization and evolution. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  13. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910.  https://doi.org/10.1021/cr040090g CrossRefGoogle Scholar
  14. Foiles SM (1985) Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method. Phys Rev B 32:7685–7693.  https://doi.org/10.1103/PhysRevB.32.7685 CrossRefGoogle Scholar
  15. Grigorev IS, Meilikhov EZ (eds) (1997) Handbook of physical quantities. CRC Press LLC, Boca RatonGoogle Scholar
  16. Guggenheim EA (1933) Modern thermodynamics by the method of Willard Gibbs. Methuen and Co Ltd, LondonCrossRefGoogle Scholar
  17. Kaptay G (2015) Partial surface tension of components of a solution. Langmuir 31:5796–5804.  https://doi.org/10.1021/acs.langmuir.5b00217 CrossRefGoogle Scholar
  18. Kaptay G (2016) Modelling equilibrium grain boundary segregation, grain boundary energy and grain boundary segregation transition by the extended Butler equation. J Mater Sci 51:1738–1755.  https://doi.org/10.1007/s10853-015-9533-8 CrossRefGoogle Scholar
  19. Kaptay G (2017) On the negative surface tension of solution and on spontaneous emulsification. Langmuir 33:10550–10560.  https://doi.org/10.1021/acs.langmuir.7b01968 CrossRefGoogle Scholar
  20. Kondepudi D, Prigogine I (2015) Modern thermodynamics. From heat engines to dissipative structures. Wiley, New YorkGoogle Scholar
  21. Korozs J, Kaptay G (2017) Derivation of the Butler equation from the requirement of the minimum Gibbs energy of a solution phase, taking into account its surface area. Coll Surf A 533:296–301.  https://doi.org/10.1016/j.colsurfa.2017.09.010 CrossRefGoogle Scholar
  22. Li X, Chen Q, McCue I, Snyder J, Crozier P, Erlebacher J, Sieradzki K (2014) Dealloying of noble-metal alloy nanoparticles. Nanolett 14:2569–2577.  https://doi.org/10.1021/nl500377g CrossRefGoogle Scholar
  23. Ng YS, Tsong TT, McLane SB Jr (1979) Absolute compositions depth profile of a Cu–Ni alloy in a surface segregation study. Phys Rev Lett 42:588–591.  https://doi.org/10.1103/PhysRevLett.42.588 CrossRefGoogle Scholar
  24. Pattekari P, Zheng Z, Zhang X, Levchenko T, Torchilin V, Lvov Y (2011) Top-down and bottom-up approaches in production of aqueous nanocolloids of low solubility drug paclitaxel. Phys Chem Chem Phys 13:9014–9019.  https://doi.org/10.1039/c0cp02549f CrossRefGoogle Scholar
  25. Pellicer E, Varea A, Sivaraman KM, Pane S, Surinash S, Baro MD, Nogues J, Nelson BJ, Sort J (2011) Grain boundary segregation and interdiffusion effects in the nickel–copper alloys: an effective means to improve the thermal stability of nanocrystalline nickel. ACS Appl Mater Interfaces 3:2265–2274.  https://doi.org/10.1021/am2004587 CrossRefGoogle Scholar
  26. Prigogine I (1955) Introduction to thermodynamics of irreversible processes. Charles C Thomas, SpringfieldGoogle Scholar
  27. Redlich O, Kister AT (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem 40:345–348.  https://doi.org/10.1021/ie50458a036 CrossRefGoogle Scholar
  28. Samsonov VM (2002) Conditions for the applicability of a thermodynamic description of highly disperse and microheterogeneous systems. Russ J Phys Chem 76:1863–1867Google Scholar
  29. Samsonov VM, Bazulev AN, Sdobnyakov NY (2003) On applicability of Gibbs thermodynamics to nanoparticles. Centr Eur J Phys 1:474–484.  https://doi.org/10.2478/BF02475858 Google Scholar
  30. Samsonov VM, Bembel AG, Vasilyev SA (2013) Molecular dynamics simulation of melting and freezing of gold nanoclusters. Proc Int Conf Nanomater 2:02PCN11Google Scholar
  31. Samsonov VM, Vasilyev SA, Talyzin IV, Ryzhkov YA (2016) On reasons for the hysteresis of melting and crystallization of nanoparticles. J Exp Theor Phys 103:94–99.  https://doi.org/10.1134/S0021364016020119 CrossRefGoogle Scholar
  32. Samsonov VM, Bembel AG, Kartoshkin AY, Vasilyev SA, Talyzin IV (2018) Molecular dynamics and thermodynamic simulations of segregation phenomena in binary metal nanoparticles. J Therm Anal Calorim 133:1207–1217.  https://doi.org/10.1007/s10973-018-7245-4 CrossRefGoogle Scholar
  33. Sato K, Matsushima Y, Konno TJ (2017) Surface-segregation-induced phase separation in epitaxial Au/Co nanoparticles: formation and stability of core–shell structures. AIP Adv 7:065309.  https://doi.org/10.1063/1.4986905 CrossRefGoogle Scholar
  34. Tomanek D, Mukherjee S, Bennemann KH (1983) Simple theory for the electronic and atomic structure of small clusters. Phys Rev B 28:665–673.  https://doi.org/10.1103/PhysRevB.28.665 CrossRefGoogle Scholar
  35. Traina C, Nývltb MN, Bartenliana B, Beauvillaina P, Matheta V, Mégya R, Višňovskýb S (1997) Spectroscopic PMOKE evidence of Au/Co segregation in a Au50Co50 cover layer deposited on Co(0001)/Au(111) with perpendicular anisotropy. J Magn Magn Mater 165:417–420.  https://doi.org/10.1016/S0304-8853(96)00574-4 CrossRefGoogle Scholar
  36. Webber PR, Rojas CE, Dobson PJ, Chadwick D (1981) A combined XPS/AES study of Cu segregation to the high and low index surfaces of a Cu–Ni alloy. Surf Sci 105:20–40CrossRefGoogle Scholar
  37. Zhou XW, Johnson RA, Wadley HNG (2004) Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 69:144113.  https://doi.org/10.1103/PhysRevB.69.144113 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • V. M. Samsonov
    • 1
    Email author
  • I. V. Talyzin
    • 1
  • A. Yu. Kartoshkin
    • 1
  • S. A. Vasilyev
    • 1
  1. 1.Tver State UniversityTverRussia

Personalised recommendations