Advertisement

Applied Nanoscience

, Volume 8, Issue 8, pp 1895–1905 | Cite as

Charge-transfer peculiarities in mesoporous BiVO4 surfaces with anchored indoline dyes

  • Karolina Ordon
  • Victor Ishrayelu Merupo
  • Sandrine Coste
  • Olivier Noel
  • Nicolas Errien
  • Malgorzata Makowska-Janusik
  • Abdel hadi Kassiba
Original Article
  • 6 Downloads

Abstract

Mesoporous thin films of bismuth vanadate were synthesized by sol–gel method with defined deposition parameters and annealing treatments leading to nano-textured surfaces. The stabilization of monoclinic BiVO4 structure was demonstrated by structural investigations and nano-islands morphology of the films illustrated by Atomic Force Microscopy (AFM) studies. Indoline dyes (D149) were used to sensitize the film surfaces able to show photoinduced charge transfer on the hybrid surfaces using Kelvin force microscopy (KFM). The distributions of the surface electrical potentials were compared as function of the surface texture and the sensitization by dyes. A model of the band alignment in hybrid systems was proposed to account for the observed charge transfer. The photocatalytic activity of the hybrid films was also investigated and discussed.

Keywords

Mesoporous BiVO4 Electrical surface potential Kelvin force microscopy Photocatalysis 

Notes

Acknowledgements

K. Ordon gratefully acknowledges the financial support given by Excellence Eiffel Scholarship from French government and from the doctoral School 3MPL of Bretagne Loire University. The research is partly made within the project No. UMO-2016/21/N/ST3/00455 from National Science Centre, Poland. The authors would like to thank prof. Alain Bulou for Raman spectroscopy analysis.

References

  1. Awasthi K, Hsu HY, Diau EWG, Ohta N (2014) Enhanced charge transfer character of photoexcited states of dye sensitizer on the N719/TiO2 interface as revealed by electroabsorption spectra. J Photochem Photobiol A 288:70–75CrossRefGoogle Scholar
  2. Bisquert J, Zaban A, Salvador P (2002) Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells. Nonequilibrium steady-state statistics and interfacial electron transfer via surface states. J Phys Chem B 106:8774–8782CrossRefGoogle Scholar
  3. Brack P, Sagu JS, Peiris TAN, McInnes A, Senili M, Upul Wijayantha KG, Marken F, Selli E (2015) Aerosol-assisted CVD of bismuth vanadate thin films and their photoelectrochemical properties. Chem Vap Deposition 21:41–45CrossRefGoogle Scholar
  4. Çakir D. Bokdam M. Jong MP. Fahlman M, Brocks G (2012) Modeling charge transfer at organic donor-acceptor semiconductor interfaces. Appl Phys Lett 100:203302CrossRefGoogle Scholar
  5. Chabas A, Lombardo T, Cachier MH, Pertuisot K, Falcone R, Verità M, Geotti-Bianchini F (2008) Behaviour of self-cleaning glass in urban atmosphere. Build Environ 43(12):2124–2131CrossRefGoogle Scholar
  6. Chang X, Wang T, Zhang P, Zhang J, Li A, Gong J (2015) Enhanced surface reaction kinetics and charge separation of p–n heterojunction Co3O4/BiVO4 photoanodes. J Am Chem Soc 137:8356–8359CrossRefGoogle Scholar
  7. Chatterjee D, Mahata A (2001a) Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light. Appl Catal B 33(2):119–125CrossRefGoogle Scholar
  8. Chatterjee D, Mahata A (2001b) Photoassisted detoxification of organic pollutants on the surface modified TiO2 semiconductor particulate system. Catal Commun 2(1):1–3CrossRefGoogle Scholar
  9. Chen G, Zheng K, Mo X, Sun D, Meng Q, Chen G (2010) Metal-free indoline dye sensitized zinc oxide nanowires solar cell. Mater Lett 64:1336–1339CrossRefGoogle Scholar
  10. Colmenares JC, Luque R, Campelo JM, Colmenares F, Karpiński Z, Romero AA (2009) Nanostructured photocatalysts and their applications in the, photocatalytic transformation of lignocellulosic biomass: an, overview. Materials 2:2228–2258CrossRefGoogle Scholar
  11. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1(1):1–21CrossRefGoogle Scholar
  12. Gotic M, Music S, Ivanda M, Soufek M, Popovic S (2005) Synthesis and characterisation of bismuth(III) vanadate. J Mol Struct 744–747:535–540CrossRefGoogle Scholar
  13. Hashimoto K, Irie H, Fujishima A (2005) TiO2 Photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44(12):8269–8285CrossRefGoogle Scholar
  14. Hobbs CC, Fonseca LRC, Knizhnik A, Dhandapani V (2004) Fermi-level pinning at the polysilicon/metal oxide interface—part I. IEEE Trans On Electron Devices 51:971–977CrossRefGoogle Scholar
  15. Jiang HQ, Endo H, Natori H, Nagai M, K (2008) Kobayashi Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method. J Eur Ceram Soc 28:2955–2962CrossRefGoogle Scholar
  16. Jiang H, Dai H, Meng X, Zhang L, Deng J, Ji K (2011) Morphology-dependent photocatalytic performance of monoclinic BiVO4 for methyl orange degradation under visible-light irradiation. Chin J Catal 32:939–949CrossRefGoogle Scholar
  17. Kakiage K, Aoyama Y, Yano T, Otsuka T, Kyomen T, Unnoc M, Hanaya M (2014) An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell. Chem Commun 50:6379CrossRefGoogle Scholar
  18. Kojinok PPS, Phanichphant S (2012) Bismuth Vanadate (BiVO4) powder prepared by the sol-gel method. J Metals Mater Miner 22(2):49–53Google Scholar
  19. Li G, Zhang D, Yu JC (2008) Ordered mesoporous BiVO4 through nanocasting: a superior visible light-driven photocatalyst. Chem Mater 20(12):3983–3992CrossRefGoogle Scholar
  20. Liu B, Wang H, Wang S, Yan H (2003) Hydrothermal preparation of BiVO4 powders. J Mater Sci Eng B 104(1–2):36–39CrossRefGoogle Scholar
  21. Liu H, Nakamura R, Nakato Y (2005) Promoted photo-oxidation reactivity of particulate BiVO4 photocatalyst prepared by a photoassisted sol-gel method. J Electrochem Soc 152(11)G856–G861CrossRefGoogle Scholar
  22. Liu Z, Kobayashi M, Paul BC, Bao Z, Nishi Y (2010) Contact engineering for organic semiconductor devices via Fermi level depinning at the metal-organic interface. Phys Rev B 82:035311CrossRefGoogle Scholar
  23. Lopez R, Gomez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7CrossRefGoogle Scholar
  24. Lu Y, Luo YS, Xiao HM, Fu SY (2014) Novel core–shell structured BiVO4 hollow spheres with an ultra-high surface area as visible-light-driven catalyst. Cryst Eng Commun 16:6059CrossRefGoogle Scholar
  25. Makowska-Janusik M, Kassiba A (2016) Photoactive semiconducting oxides for energy and environment: experimental and theoretical insights. Hand Comput Chemistry 18:1–48.  https://doi.org/10.1007/978-94-007-6169-8 CrossRefGoogle Scholar
  26. Martin ST, Morrison CL (1994) Photochemical mechanism of size-quantized Vanadium-doped TiO2 particles. J Phys Chem 98(51):13695–13704CrossRefGoogle Scholar
  27. Mei P, Henderson M, Kassiba A, Gibaud A (2010) EPR study of nitrogen-doped mesoporous TiO2 powders. J Phys Chem Solids 71:1–6CrossRefGoogle Scholar
  28. Meng X, Zhang L, Dai H, Zhao Z, Liu Y (2011a) Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites. Mater Chem Phys 125(1–2):59–65CrossRefGoogle Scholar
  29. Meng X, Zhang L, Dai H, Zhao Z, Zhang R, Liu Y (2011b) Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites. Mater Chem Phys 125:59–65CrossRefGoogle Scholar
  30. Merupo VI, Velumani S, Ordon K, Errien N, Szade J, Kassiba A (2015) Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO4). Cryst Eng Commun 17:3366–3375CrossRefGoogle Scholar
  31. Mills A, Davies RH, Worsley D (1993) Water purification by semiconductor photocatalysis. Chem Soc Rev 22:417–425CrossRefGoogle Scholar
  32. Ordon K, Kassiba A, Makowska-Janusik M (2016) Electronic, optical and vibrational features of BiVO4 nanostructures investigated by first-principles calculations. RSC Adv 6:110695–110705CrossRefGoogle Scholar
  33. Payne DJ, Robinson MDM, Egdell RG, Walsh A, McNulty J, Smith KE, Piper LFJ (2011) The nature of electron lone pairs in BiVO4. Appl Phys Lett 98:212110CrossRefGoogle Scholar
  34. Paz Y, Luo Z, Rabenberg L, Heller A (1995) Photooxidative self-cleaning transparent titanium dioxide films on glass. J Mater Res 10(11):2842–2848CrossRefGoogle Scholar
  35. Peisert H, Petr A, Dunsch L, Chass T, Knupfer M (2007) Interface Fermi level pinning at contactsbetween PEDOT: PSS and molecular organic semiconductors. Chem Phys Chem 8:386–390CrossRefGoogle Scholar
  36. Ren X-F, Zhang J, Kang G-J (2015) Theoretical studies of electronic structure and photophysical properties of a series of indoline dyes with Triphenylamine ligand. J Nanomater 8:1–9Google Scholar
  37. Serpone N, Lawless D, Disdier J, Herrmann JM (1994) Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+ and V5+ cations. Langmuir 10(3):643–652CrossRefGoogle Scholar
  38. Shang M, Wang W, Zhou L, Sun S, Yin W (2009) Nanosized BiVO4 with high visible-light-induced photocatalytic activity: Ultrasonic-assisted synthesis and protective effect of surfactant. J Hazard Mater 172(1):338–344CrossRefGoogle Scholar
  39. Sharp ID, Cooper JK, Toma FM, Buonsanti R (2017) Bismuth Vanadate as a platform for accelerating discovery and development of complex transition-metal oxide photoanodes. ACS Energy Lett 2:139–150CrossRefGoogle Scholar
  40. Vargas J, Hernandez S, Coste A, Murillo GF, Romo C, Kassiba A (2017) Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO2. J Alloy Comp 710:355–363CrossRefGoogle Scholar
  41. Walsh A, Yan Y, Huda MN, Al-Jassim MM, Wei SH (2009) Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals. Chem Mater 21(3):547–551CrossRefGoogle Scholar
  42. Yang T, Xia D, Chen G, Chen Y (2009) Influence of the surfactant and temperature on the morphology and physico-chemical properties of hydrothermally synthesized composite oxide BiVO4. Mater Chem Phys 114:69–72CrossRefGoogle Scholar
  43. Ye C, Zhang J, Feng C, Ando M, He D (2007) Preparation, photocatalytic activity, and mechanism of nano-TiO2 Co-doped with nitrogen and Iron (III). J Phys Chem C 111(28):10618–10623CrossRefGoogle Scholar
  44. Yu J, Kudo A (2006) Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4,. Adv FuncT Mater 16(16):2163–2169CrossRefGoogle Scholar
  45. Zhang A, Zhang J (2009) Characterization of visible-light-driven BiVO4 photocatalysts synthesized via a surfactant-assisted hydrothermal method. Spectrochim Acta Part A Mol Biomol Spectrosc 73(2):336–341CrossRefGoogle Scholar
  46. Zhang L, Chen D, Jiao X (2006) Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J Phys Chem B 110:2668–2673CrossRefGoogle Scholar
  47. Zhang X, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases. Mater Chem Phys 103:162–167CrossRefGoogle Scholar
  48. Zhang X, Du L et al (2013) Highly ordered mesoporous BiVO4: Controllable ordering degree and super photocatalytic ability under visible light. Microporous Mesoporous Mater 173:175–180CrossRefGoogle Scholar
  49. Zhou L, Wang W, Zhang L, Xu H, Zhu W (2007) Single-crystalline BiVO4 microtubes with square cross-sections: microstructure, growth mechanism, and photocatalytic property. J Phys Chem C 111:13659–13664CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Karolina Ordon
    • 1
    • 2
  • Victor Ishrayelu Merupo
    • 1
  • Sandrine Coste
    • 1
  • Olivier Noel
    • 1
  • Nicolas Errien
    • 1
  • Malgorzata Makowska-Janusik
    • 2
  • Abdel hadi Kassiba
    • 1
  1. 1.Institute of Molecules and Materials of Le Mans-UMR CNRS 6283Le Mans UniversityLe MansFrance
  2. 2.Institute of Physics, Faculty of Mathematics and Natural ScienceJan Dlugosz University in CzestochowaCzestochowaPoland

Personalised recommendations