Applied Nanoscience

, Volume 8, Issue 8, pp 2021–2030 | Cite as

WO3–TiO2 nanocomposites for paracetamol degradation under visible light

  • Khadijah S. Namshah
  • Reda M. MohamedEmail author
Original Article


TiO2 has wide band gap energy and also it has fast recombination rate for electron and hole. Therefore, titanium dioxide excited by ultraviolet light and its photocatalytic activity is small. Enlargement of titanium dioxide activity can be carried out by separation of electron–hole pairs. In this, TiO2–WO3 nanocomposites with various percent of WO3 were synthesis by sol–gel technique in existence of hexadecyltrimethylammonium bromide as template. Physical, photocatalytic and structural properties of titanium dioxide and TiO2–WO3 nanocomposites were measured by many characterizations tools. Performance of titanium dioxide and TiO2–WO3 nanocomposites were measured for paracetamol degradation using visible light. Titanium dioxide band gap can be tailored by control tungsten trioxide weight percent. 3 wt% of tungsten trioxide reduce band gap to 2.63 eV. The optimum weight percent of tungsten trioxide is 3 wt% at which photocatalytic performance for paracetamol degradation is larger than that of TiO2, TiO2–WO3—1 wt%, TiO2–WO3—2 wt% and TiO2–WO3—4 wt% by 33.3, 2.1, 1.6 and 1 times, respectively. TiO2–WO3—3 wt% has photocatalytic stability for five times.


WO3–TiO2 Visible light Paracetamol degradation 



The authors would like to express their gratitude to King Khalid University, Saudi Arabia for providing administrative and technical support.


  1. Abdel-Wahab A, Al-Shirbini A, Mohamed O, Nasr O (2017) Photocatalytic degradation of paracetamol over magnetic flower-like TiO2/Fe2O3 core-shell nanostructures. J Photochem Photobiol A 347:186–198CrossRefGoogle Scholar
  2. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  3. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  4. Choi T, Kim J-S, Kim JH (2016) Influence of alkoxide structures on formation of TiO2/WO3 heterojunctions for photocatalytic decomposition of organic compounds. Adv Powder Technol 27:2061–2065CrossRefGoogle Scholar
  5. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027CrossRefGoogle Scholar
  6. Daous M, Iliev V, Petrovc L (2014) Gold-modified N-doped TiO2 and N-doped WO3/TiO2 semiconductors as photocatalysts for UV–visible light destruction of aqueous 2,4,6-trinitrotoluene solution. J Mol Catal A Chem 392:194–201CrossRefGoogle Scholar
  7. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938CrossRefGoogle Scholar
  8. Esplugas S, Bila DM, Krause LGT, Dezotti M (2007) Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149:631–642CrossRefGoogle Scholar
  9. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357CrossRefGoogle Scholar
  10. Georgieva J, Valova E, Armyanov S, Philippidis N, Poulios I, Sotiropoulos S (2012) Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2–WO3 photoanodes. J Hazard Mater 211–212:30–46CrossRefGoogle Scholar
  11. Gil A, Fernández M, Mendizábal I, Korili SA, Soto-Armañanzas J, Crespo-Durante A, Gómez-Polo C (2016) Fabrication of TiO2 coated metallic wires by the sol–gel technique as a humidity sensor. Ceram Int 42:9292–9298CrossRefGoogle Scholar
  12. Gil A, García AM, Fernández M, Vicente MA, González-Rodríguez B, Rives V, Korili SA (2017) Effect of dopants on the structure of titanium oxide used as a photocatalyst for the removal of emergent contaminants. J Ind Eng Chem 53:183–191CrossRefGoogle Scholar
  13. Gillet M, Aguir V, Lemire V, Gillet V, Schierbaum V (2004) The structure and electrical conductivity of vacuum-annealed WO3 thin films. Thin Solid Films 467:239–246CrossRefGoogle Scholar
  14. Gomathi Devi L, Kavitha R (2013) A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity. Appl Catal B Environ 140–141:559–587CrossRefGoogle Scholar
  15. Gonzalez CSO, Esplugas S (2007) Sulfamethoxazole abatement by photo-Fenton toxicity, inhibition and biodegradability assessment of intermediates. J Hazard Mater 146:459–464CrossRefGoogle Scholar
  16. He T, Ma Y, Cao Y, Hu X, Liu H, Zhang G, Yang W, Yao V (2002) Photochromism of WO3 colloids combined with TiO2 nanoparticles. J Phys Chem B 106:12670–12676CrossRefGoogle Scholar
  17. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Einvironmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  18. Iliev V, Tomova D, Bilyarska L (2018) Promoting the oxidative removal rate of 2,4-dichlorophenoxyacetic acid on gold-doped WO3/TiO2/reduced graphene oxide photocatalysts under UV light irradiation. J Photochem Photobiol A 351:69–77CrossRefGoogle Scholar
  19. Jagannathan FGM, Ashokkumar M (2003) Sonophotocatalytic degradation of paracetamol using TiO2 and Fe3+. Sep Purif Technol 103:114–118CrossRefGoogle Scholar
  20. Jallouli N, Elghniji K, Trabelsi H, Ksibi M (2017) Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation. Arab J Chem 10:S3640–S3645CrossRefGoogle Scholar
  21. Jiménez GG, Valdez HCA, Granados SG, de León CP (2012) Degradation of paracetamol by advance oxidation processes using modified reticulated vitreous carbon electrodes with TiO2 and CuO/TiO2/Al2O3. Chemosphere 89:1195–1201CrossRefGoogle Scholar
  22. Jones OAH, Voulvoulis N, Lester JN (2005) Human pharmaceuticals in wastewater treatment processes. Crit Rev Environ Sci Technol 35:401–427CrossRefGoogle Scholar
  23. Kadi MW, Ismail AA, Mohamedrause RM, Bahnemann WD (2018) Photodegradation of the herbicide imazapyr over mesoporous In2O3–TiO2 nanocomposites with enhanced photonic efficiency. Sep Purif Technol 205:66–73CrossRefGoogle Scholar
  24. Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to Green Chemistry. Chem Rev 107:2319–2364CrossRefGoogle Scholar
  25. Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use–present knowledge and future challenges. J Environ Manag 90:2354–2366CrossRefGoogle Scholar
  26. Lin C-J, Yang W-T (2014) Ordered mesostructured Cu-doped TiO2 spheres as active visible-light-driven photocatalysts for degradation of paracetamol. Chem Eng J 237:131–137CrossRefGoogle Scholar
  27. Magureanu M, Mandache NB, Parvulescu VI (2015) Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water Res 81:124–136CrossRefGoogle Scholar
  28. Melo SAS, Trov’o AG, Nogueira RFP (2008) Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process—application to sewage treatment plant effluent. J Photochem Photobiol A Chem 198:215–220CrossRefGoogle Scholar
  29. Meric S, Naddeo V, Kassinos D, Belgiorno V, Guida M (2009) Fate of pharmaceuticals in contaminated urban wastewater effluent under ultrasonic irradiation. Water Res 43:4019–4027CrossRefGoogle Scholar
  30. Miyauchi V, Nakajima A, Watanabe T, Hashimoto V (2002) Photoinduced hydrophilic conversion of TiO2/WO3 layered thin films. Chem Mater 14:4714–4720CrossRefGoogle Scholar
  31. Mohamed RM, Aazam ES (2015) New visible-light Pt/PbS nanoparticle photocatalysts for the photocatalytic oxidation of thiophene. Clean Soil Air Water 43(3):421–426CrossRefGoogle Scholar
  32. Nunes B, Antunes SC Santos J, Martins L, Castro BB (2014) Toxic potential of paracetamol to freshwater organisms: a headache to environmental regulators? Ecotoxicol Environ Saf 107:178–185CrossRefGoogle Scholar
  33. Pan JH, Dou H, Xiong Z, Xu C, Ma J, Zhao XS (2010) Porous photocatalysts for advanced waterpurifications. J Mater Chem 20:4512–4528CrossRefGoogle Scholar
  34. Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol C Photochem Rev 15:1–20CrossRefGoogle Scholar
  35. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349CrossRefGoogle Scholar
  36. Prescott LF (2000) Paracetamol, alcohol and the liver. Br J Clin Pharmacol 49:291–301CrossRefGoogle Scholar
  37. Rahman MF, Yanful EK, Jasim SY (2009) Occurrences of endocrine disrupting compounds and pharmaceuticals in the aquatic environment and their removal from drinking water: Challenges in the context of the developing world. Desalination 248:578–585CrossRefGoogle Scholar
  38. Riboni F, Dozzi MV, Paganini MC, Giamello E, Selli E (2017) Photocatalytic activity of TiO2–WO3 mixed oxides in formic acid oxidation. Catal Today 287:176–181CrossRefGoogle Scholar
  39. Rimoldi L, Meroni D, Falletta E, Ferretti AM, Gervasini A, Cappelletti G, Ardizzone S (2017) The role played by different TiO2 features on the photocatalytic degradation of paracetamol. Appl Surf Sci 424:198–205CrossRefGoogle Scholar
  40. Rives V (2013a) Preparation of titania nanoparticles and relationships between procedures and properties. In: Nagy I, Balogh A (eds) New developments in metal oxides research, Chapter 1. NOVA Sci. Pub., Inc., New York, pp 1–79Google Scholar
  41. Rives V (2013b) Morphology-Tailored titania nanoparticles. In: Suib SL (ed) New and future developments in catalysis: catalysis by nanoparticles. Elsevier, Amsterdam, pp 189–211CrossRefGoogle Scholar
  42. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DV (2014) Understanding Tio2 photocatalysis: mechanisms materials. Chem Rev 114:9919–9986CrossRefGoogle Scholar
  43. Segura SG, Brillas E (2017) Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J Photochem Photobiol C 31:1–35CrossRefGoogle Scholar
  44. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110:24287–24293CrossRefGoogle Scholar
  45. Shakir M, Faraz M, Sherwani MA, Al-Resayes S (2016) Coumarin–pyrene conjugate: synthesis, structure and Cu-selective fluorescent sensing in mammalian kidney cells. J Lumin 176:159–167CrossRefGoogle Scholar
  46. Shane JD, Snyder A, Adhamb S, Oppenheimer J, Redding AM, Wert EC, Cannon FS, Yoon Y (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202:156–181CrossRefGoogle Scholar
  47. Shiyanovskaya V, Hepel M (1999) Bicomponent WO3/TiO2 films as photoelectrodes. J Electrochem Soc 146:243–249CrossRefGoogle Scholar
  48. Stübe J, Ried A, Ternesa TA, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res 37:1976–1982CrossRefGoogle Scholar
  49. Thi VH-T, Lee B-K (2017) Mater Res Bull 96:171–182CrossRefGoogle Scholar
  50. Westerhoff Y, Snyder Y, Wert E (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39:6649–6663CrossRefGoogle Scholar
  51. Yang L, Yu LE, Ray MB (2008) Degradation of paracetamol in aqueous solutions by TiO2 photocatalysiss. Water Res 42:3480–3488CrossRefGoogle Scholar
  52. Žerjav G, Arshad MS, Djinovíc P, Zavǎsnik J, Pintar A (2017) Electron trapping energy states of TiO2–WO3 composites and their influence on photocatalytic degradation of bisphenol A. Appl Catal B 209:273–284CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Department of Chemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Advanced Materials Department, Central Metallurgical R&D InstituteCMRDIHelwanEgypt

Personalised recommendations