Applied Nanoscience

, Volume 8, Issue 8, pp 1877–1886 | Cite as

Development of bovine serum albumin–capsaicin nanoparticles for biotechnological applications

  • Lino Sánchez-SeguraEmail author
  • Neftalí Ochoa-Alejo
  • Ramón Carriles
  • Laura E. Zavala-García
Original Article


The main use of capsaicin is as a condiment in food industry. Pharmaceutical and biotechnological applications of capsaicin have been restricted by photooxidation, chemical decomposition and low solubility in water. Protein-based particles represent an alternative for encapsulation. The aim of this work was to develop bovine serum albumin (BSA)-capsaicin nanoparticles and analyse the effect of the capsaicin concentration on the properties of nanoparticles. We prepared nanoparticles at 0, 625, 1250, 1875 and 2500 µg/mL of capsaicin with BSA. The concentration of capsaicin was positively correlated with BSA (R = 0.9910) and encapsulated capsaicin (R = 0.9977). We found that at 1250 µg/mL of capsaicin the nanoparticles showed the highest encapsulated efficiency (82.3%), the smallest size (131 nm) and the lowest ζ-potential (-54.82 mV), while the aspect ratio (Ar = 1.08) and shape factor (Sf = 0.65) showed a circular shape with one single capsaicin core. In contrast, at 1875 and 2500 µg/mL of capsaicin, coalescence between particles increased, resulting in a larger size of nanoparticles with elliptical shape (Ar = 1.29; Sf = 0.59, and Ar = 1.55; Sf = 0.54, respectively).


Capsaicin Bovine serum albumin Nanoparticles Aspect ratio Shape factor ζ-Potential 



Authors want to thank MSc. YM Rodríguez-Aza for their support in the HPLC analysis, PhD. June Simpson for facilities of Epoch equipment and the optical properties of materials group at CIO for assistance with the ζ-potential measurements.

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest. This work was supported by Cinvestav-Unidad Irapuato.


  1. Anand BG, Dubey K, Shekhawat DS, Kar K (2016) Capsaicin-coated silver nanoparticles inhibit amyloid fibril formation of serum albumin. Biochemistry 55:3345–3348. CrossRefGoogle Scholar
  2. Antonious FG, Lobel L, Kochhar T, Berke T, Jarret RL (2009) Antioxidants in Capsicum chinense: variation among countries of origin. J Environ Sci Health B 44:621–626. CrossRefGoogle Scholar
  3. Arnedo A, Espuelas S, Irache MJ (2002) Albumin nanoparticles as carriers for a phosphodiester oligonucleotide. Int J Pharm 244:59–72. CrossRefGoogle Scholar
  4. Augustin AM, Hemar Y (2009) Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev 38:902–912. CrossRefGoogle Scholar
  5. Bhalekar M, Upadhaya P, Madgulkar A (2017) Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci 7:47–57. CrossRefGoogle Scholar
  6. Bouwman MA, Bosma CJ, Vonk P, Wesselingh AJ, Frijlink WH (2004) Which shape factor(s) best describe granules? Powder Technol 146:66–72. CrossRefGoogle Scholar
  7. Bronze-Uhle ES, Costa BC, Ximenes VF, Lisboa-Filho PN (2017) Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol Sci Appl 10:11–21. CrossRefGoogle Scholar
  8. Choi AJ, Kim CJ, Cho YJ, Hwang JK, Kim CT (2011) Characterization of capsaicin-loaded nanoemulsions stabilized with alginate and chitosan by self-assembly. Food Bioprocess Tech 4:1119–1126. CrossRefGoogle Scholar
  9. Edwards-Lévy F, Andry MC, Lévy MC (1993) Determination of free amino group content of serum albumin microcapsules using trinitrobenzenesulfonic acid: effect of variations in polycondensation pH. Int J Pharm 96:85–90. CrossRefGoogle Scholar
  10. Eremin DB, Ananikov VP (2017) Understanding active species in catalytic transformations: from molecular catalysis to nanoparticles, leaching, “Cocktails” of catalysts and dynamic systems. Coord Chem Rev 346:2–19. CrossRefGoogle Scholar
  11. Fan YH, Nazari M, Raval G, Khan Z, Patel H, Heerklotz H (2014) Utilizing zeta potential measurements to study the effective charge, membrane partitioning, and membrane permeation of the lipopeptide surfactin. Biochim Biophys Acta 1838:2306–2312. CrossRefGoogle Scholar
  12. Gebregeorgis A, Bhan C, Wilson O, Raghavan D (2013) Characterization of silver/bovine serum albumin (Ag/BSA) nanoparticles structure: morphological, compositional, and interaction studies. J Colloid Interface Sci 389:31–41. CrossRefGoogle Scholar
  13. Ikeda S, Morris VJ (2002) Fine-stranded and particulate aggregates of heat-denatured whey protein visualized by atomic force microscopy. Biomacromolecules 3:382–389. CrossRefGoogle Scholar
  14. Jahanban-Esfahlan A, Dastmalchi S, Davaran S (2016) A simple improved desolvation method for the rapid preparation of albumin nanoparticles. Int J Biol Macromol 91:703–709. CrossRefGoogle Scholar
  15. Jun YJ, Nguyen HH, Paik SYR, Chun SH, Kang BC, Ko S (2011) Preparation of size-controlled bovine serum albumin (BSA) nanoparticles by a modified desolvation method. Food Chem 127:1892–1898. CrossRefGoogle Scholar
  16. Kaibara K, Okazaki T, Bohidar HB, Dubin PL (2000) pH-induced coacervation in complexes of bovine serum albumin and cationic polyelectrolytes. Biomacromol 1:100–107. CrossRefGoogle Scholar
  17. Kim TH, Jiang HH, Youn YS, Park CW, Tak KK, Lee S (2011) Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int J Pharm 403:285–291. CrossRefGoogle Scholar
  18. Kopec ES, DeBellis JR, Irwin SR (2002) Chemical analysis of freshly prepared and stored capsaicin solutions: Implications for tussigenic challenges. ‎Pulm Pharmacol Ther 15:529–534. CrossRefGoogle Scholar
  19. Kumari M, Pandey S, Giri VP, Bhattacharya A, Shukla R, Mishra A, Nautiyal CS (2017) Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microb Pathog 105:346–355. CrossRefGoogle Scholar
  20. Langer K, Balthasar S, Vogel V, Dinauer N, Briesen von H, Schubert D (2003) Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm 257:169–180. CrossRefGoogle Scholar
  21. Li Y, Zhao X, Zu Y, Han X, Ge Y, Wang W, Yu X (2012) A novel active targeting preparation, vinorelbine tartrate (VLBT) encapsulated by folate-conjugated bovine serum albumin (BSA) nanoparticles: preparation, characterization and in vitro release study. Materials 5:2403–2422. CrossRefGoogle Scholar
  22. Maghsoudi A, Shojaosadati SA, Farahani EV (2008) 5-Fluorouracil-loaded BSA nanoparticles: formulation optimization and in vitro release study. AAPS Pharm Sci Tech 9:1092–1096. CrossRefGoogle Scholar
  23. Mozaffari S, Tchoukov P, Atias J, Czarnecki J, Nazemifard N (2015) Effect of asphaltene aggregation on rheological properties of diluted athabasca bitumen. Energy Fuels 29:5595–5599. CrossRefGoogle Scholar
  24. Mozaffari S, Li W, Thompson C, Ivanov S, Seifert S, Lee B, Kovarike L, Karim AM (2017) Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand–metal binding role in controlling the nucleation and growth kinetics. Nanoscale 9:13772–13785CrossRefGoogle Scholar
  25. Paik SYR, Nguyen HH, Ryu J, Che JH, Kang TS, Lee KJ, Song WC, Ko S (2013) Robust size control of bovine serum albumin (BSA) nanoparticles by intermittent addition of a desolvating agent and the particle formation mechanism. Food Chem 141:695–701. CrossRefGoogle Scholar
  26. Parakhonskiy B, Zyuzin VM, Yashchenok A, Carregal-Romero S, Rejman J, Möhwald H, Parak JW, Skirtach GA (2015) The influence of the size and aspect ratio of anisotropic, porous CaCO3 particles on their uptake by cells. J Nanobiotechnol 53:1–13. CrossRefGoogle Scholar
  27. Patila S, Sandbergb A, Heckertc E, Selfc W, Seala S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–4607. CrossRefGoogle Scholar
  28. Peralta VD, He J, Wheeler AD, Zhang ZJ, Tarr AM (2014) Encapsulating gold nanomaterials into size-controlled human serum albumin nanoparticles for cancer therapy platforms. J Microencapsul 31:824–831. CrossRefGoogle Scholar
  29. Perucka I, Oleszek W (2000) Extraction and determination of capsaicinoids in fruit of hot pepper Capsicum annuum L. by spectrophotometry and high-performance liquid chromatography. Food Chem 71:287–291. CrossRefGoogle Scholar
  30. Rahimnejad M, Jahanshahi M, Najafpour GD (2006) Production of biological nanoparticles from bovine serum albumin for drug delivery. Afr J Biotechnol 5:1918–1923. CrossRefGoogle Scholar
  31. Rahimnejad M, Najafpour G, Bakeri G (2012) Investigation and modeling effective parameters influencing the size of BSA protein nanoparticles as colloidal carrier. Colloids Surf A Physicochem Eng Asp 412:96–100. CrossRefGoogle Scholar
  32. Sganzerla M, Coutinho PJ, Tavares de Melo MA, Godoy TH (2014) Fast method for capsaicinoids analysis from Capsicum chinense fruits. Food Rest Int 64:718–725. CrossRefGoogle Scholar
  33. Singh SK, Singh S, Lillard JW, Singh R (2017) Drug delivery approaches for breast cancer. Int J Nanomed 12:6205–6218. CrossRefGoogle Scholar
  34. Srinivasan K (2016) Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: a review. Crit Rev Food Sci Nutr 56:1488–1500. CrossRefGoogle Scholar
  35. Syverud K, Chinga G, Per Olav J, Ingebjorg L, Knut W (2007) Analysis of lint particles from full-scale printing trials. Appita J 60:286–290Google Scholar
  36. Tabor DP, Roch LM, Saikin SK, Kreisbeck Ch, Sheberla D et al (2018) Accelerating the discovery of materials for clean energy in the era of smart automation. Nat Rev Mat 3:5–20. CrossRefGoogle Scholar
  37. Wall MA, Harmsen S, Pal S, Zhang L, Arianna G, Lombardi JR, Drain ChM, Kircher MF (2017) Surfactant-free shape control of gold nanoparticles enabled by unified theoretical framework of nanocrystal synthesis. Adv Mat 29:1–8. CrossRefGoogle Scholar
  38. Wang J, Chen S, Xu S, Xue Y, Lou J (2011) Structure and properties analysis of microcapsulated capsaicin prepared by diphase emulsion method. Adv Mat Res 239–242:3182–3185. CrossRefGoogle Scholar
  39. Wang J, Dong X, Chena S, Lou J (2013) Microencapsulation of capsaicin by solvent evaporation method and thermal stability study of microcapsules. Colloid J 75:26–33. CrossRefGoogle Scholar
  40. Weber C, Coester C, Kreuter J, Langer K (2000) Desolvation process and surface characterisation of protein nanoparticles. Int J Pharm 194:91–102. CrossRefGoogle Scholar
  41. Wiącek AE, Chibowski E (2002) Zeta potential and droplet size of n-tetradecane/ethanol (protein) emulsions. Colloids Surf B Biointerfaces 25:55–67. CrossRefGoogle Scholar
  42. Yoshikawa H, Hirano A, Arakawa T, Shiraki K (2012) Effects of alcohol on the solubility and structure of native and disulfide-modified bovine serum albumin. Int J Biol Macromol 50:1286–1291. CrossRefGoogle Scholar
  43. Zhang ZY, Zhou B, Zhang PX, Huang P, Li HC, Liu Y (2009) Interaction of malachite green with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods. J Hazard Mater 163:1345–1352. CrossRefGoogle Scholar
  44. Zhu Y, Tong W, Gao C, Mühwald H (2008) Fabrication of bovine serum albumin microcapsules by desolvation and destroyable cross-linking. J Mater Chem 18:1153–1158. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalUnidad IrapuatoGuanajuatoMexico
  2. 2.Centro de Investigaciones en Óptica A.CLeónMexico

Personalised recommendations