Advertisement

Applied Nanoscience

, Volume 8, Issue 7, pp 1729–1741 | Cite as

Preparation, physicochemical properties and antimicrobial activity of η-modification of titanium(IV) oxide intercalated with poly(N-vinylcaprolactam)

  • Olesya I. Timaeva
  • Irina P. Chihacheva
  • Galina M. Kuzmicheva
  • Lidiya V. Saf’yanova
  • Ratibor G. Chumakov
  • Raisa P. Terekhova
Original Article

Abstract

PVCL-intercalated samples containing nano-dimensional phases with η-modification of the TiO2−x·nH2O composition are obtained by hydrolysis of TiOSO4·xH2SO4·yH2O or TiOSO4·xH2O in the presence of poly(N-vinylcaprolactam) (PVCL). The incorporation of PVCL with water molecules into the interlayer space of the structure of the η-phase—TiO2−x·(PVCL nH2O)—is established by the X-ray diffraction study while the presence of PVCL in the sample composition is confirmed by the X-ray photoelectron and IR spectroscopy CHNS analysis and X-ray spectral microanalysis. Intercalated samples manifest the antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans. It is shown that the sample composition (the content of hydrated titanium dioxide) the composition of the η-phase (the presence of PVCL and H2O or the water content in the interlayer space of the structure), and the surface composition (S in the form of SO42− groups O in the form of adsorbed water and OH groups) affect the antimicrobial activity in the dark.

Keywords

Titanium(IV) oxide Intercalation Antimicrobial activity Nanoparticles Polymer 

Notes

Acknowledgements

This study was supported by the Ministry of Education and Science of the Russian Federation (agreement no. 4.1069.2017/PCh; 2017–2019).

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Abidov A, Allabergenov B, Lee J, Jeon HW, Jeong SW, Kim S (2013) X-ray photoelectron spectroscopy characterization of Fe doped TiO2 photocatalyst. Int J Mater Mech Manuf 1:294–296.  https://doi.org/10.7763/IJMMM.2013.V1.63 CrossRefGoogle Scholar
  2. Alekhin AP, Lapushkin GI, Markeev AM, Sigarev AA, Toknova VF (2010) Atomic layer deposition of titanium dioxide thin films from tetraethoxytitanium and water. Surf Investig X-ray 4:379–383.  https://doi.org/10.1134/S1027451010030043 CrossRefGoogle Scholar
  3. Blatun LA (2015) Baneocin (powder ointment)—perspective for use in complex surgical treatment of purulent necrotic diseases of the lower extremities in patients with diabetic foot syndrome. Wounds and wound infections. Prof. BM Kostyuchenok J 2:36–44.  https://doi.org/10.17650/2408-9613-2015-2-3-36-44 CrossRefGoogle Scholar
  4. Borodko Y, Habas SE, Koebel M (2006) Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J Phys Chem B 110:23052–23059.  https://doi.org/10.1021/jp063338&%23x002B; CrossRefGoogle Scholar
  5. Caballero L, Whitehead KA, Allen NS, Verran J (2009) Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. J Photochem Photobiol A 202:92–98.  https://doi.org/10.1016/j.jphotochem.2008.11.005 CrossRefGoogle Scholar
  6. Chihacheva IP, Timaeva OI, Kuzґmicheva GM, Dorohov AV, Lobanova NA, Amarantov SV, Podbelґskiy VV, Serousov VE, Sadovskaya NV (2016) Specific physical and chemical properties of two modifications of poly(N-vinylcaprolactam). Crystallogr Rep 6:421–427.  https://doi.org/10.1134/S106377451603007X CrossRefGoogle Scholar
  7. Chislov MV (2013) Intercalation of water into layered ANdTa2O7 perovskite-like oxides. Dissertation. St Petersburg State UniversityGoogle Scholar
  8. Crisan M, Zaharescu M, Jitianu A, Crisan D (2000) Sol–gel poly-component nano-sized oxide powders. J Sol Gel Sci Technol 19:409–412.  https://doi.org/10.1023/A:1008735127136 CrossRefGoogle Scholar
  9. Dadachov M (2006) Novel titanium dioxide process of making and method of using same. U.S. Patent Application Publication no. 20,060,171,877Google Scholar
  10. Darwish MSA, Nguyen NHA, Sevcu A, Stibor I (2015) Functionalized magnetic nanoparticles and their effect on Escherichia coli and Staphylococcus aureus. J Nanomater.  https://doi.org/10.1155/2015/416012 CrossRefGoogle Scholar
  11. Datsenko B, Biryukova SV, Tamm TI (1989) Methodical recommendations for experimental (preclinical) study of drugs for topical treatment of purulent wounds. USSR, МoscowGoogle Scholar
  12. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668.  https://doi.org/10.1002/1097-4636(20001215)52:4%3C662::AID-JBM10%3E3.0.CO,2-3 CrossRefGoogle Scholar
  13. Gainanova AA, Kuz’micheva GM, Khramov EV, Chumakov RG (2017) Vanadium doped nanosized titanium(IV) oxide: preparation, characterization and photocatalytic properties. In: Paper presented at the 2nd international conference on new photocatalytic materials for environment energy and sustainability (NPM-2), Ljubljana, Slovenia 2–6 July 2017Google Scholar
  14. Gardy J, Hassanpour A, Lai X, Ahmed MH (2016) Synthesis of Ti(SO4)O solid acid nano-catalyst and its application for biodiesel production from used cooking oil. Appl Catal A 527:81–95.  https://doi.org/10.1016/j.apcata.2016.08.031 CrossRefGoogle Scholar
  15. Gerasin VA, Zubova TL, Bahov FN, Barannikov AA, Merekalova ND, Korolev YuM, Antipov EM (2007) The Structure of polymer/Na ± montmorillonite nanocomposites prepared via melt-blending. Nanotechnol Russ 2:90–105Google Scholar
  16. Ivanova T, Harizanova A (2001) Characterization of TiO2 and TiO2–MnO oxides prepared by sol–gel method. Solid State Ion 138:227–232.  https://doi.org/10.1016/S0167-2738(00)00798-0 CrossRefGoogle Scholar
  17. Karimzadeh I, Aghazadeh M, Doroudi T (2016) Preparation and characterization of poly(vinylpyrrolidone)/polyvinyl chloride coated supermagnetic iron oxide (Fe3O4) nanoparticles for biomedical applications. Anal Bioanal Electrochem 8:604–614Google Scholar
  18. Kim HJ, Bae IS, Cho SJ, Cho SJ, Boo JH, Lee BC, Heo J, Chung I, Hong B (2012) Synthesis and characterization of NH2-functionalized polymer films to align and immobilize DNA molecules. Nanoscale Res Lett 7:30–36.  https://doi.org/10.1186/1556-276X-7-30 CrossRefGoogle Scholar
  19. Kirsh YuE, Karaputadze TM, Shumskii VI, Timashev SF, Krylova LA, Dobrov IB, Luhovickii BI, Popkov UM, Sheluhina GD, Polikarpov VV (1990) A method of preparation of poly(N-vinylcaprolactam). USSR Inventor’s Certificate no. 1613446Google Scholar
  20. Kozanoglu S, Ozdemir T, Usanmaz A (2011) Polymerization of N-vinylcaprolactam and characterization of poly(N-vinylcaprolactam). J Macromol Sci Part A Pure Appl Chem 48:467–477.  https://doi.org/10.1080/10601325.2011.573350 CrossRefGoogle Scholar
  21. Kuz’micheva GM (2015) Nanosized phases with titanium(IV) oxides. Preparation. Characterization. Properties. Fine Chem Technol 10:5–36Google Scholar
  22. Kuz’micheva GM, Gaynanova AA (2014) Method for the preparation of nanodimensional modification of η-TiO2. Patent no. 2,576,054Google Scholar
  23. Kuz’micheva GM, Savinkina EV, Obolenskaya LN, Belogorokhova LI, Chernobrovkin MG, Mavrin BN, Belogorokhova AI (2010) Synthesis characterization and properties of nanoscale titanium dioxide modifications with anatase and η-TiO2 structures. Crystallogr Rep 55:866–871.  https://doi.org/10.1134/S1063774510050287 CrossRefGoogle Scholar
  24. Kuz’micheva GM, Gainanova АА, Orekhov AS, Klechkovskaya VV, Sadovskaya NV, Chernyshov VV (2014) Peculiarities of the microstructure of a nanoscale modification of η-TiO2. Crystallogr Rep 59:1008–1014.  https://doi.org/10.1134/S1063774514050101 CrossRefGoogle Scholar
  25. Kuz’micheva GM, Podbel’sky VV, Gaynanova AA (2016) Program for qualitative and quantitative X-ray analysis of multiphase samples. No. 2,016,616,402Google Scholar
  26. Kuz’micheva GM, Podbel’sky VV, Stepanov AN, Gaynanova AA (2017a) Program for processing of diffraction patterns of nanosized and amorphous substances and calculation of the substructure. No. 2,017,610,699Google Scholar
  27. Kuzmicheva GM, Podbel’sky VV, Timaeva OI, Ishakova LR (2017b) Program for processing IR spectra and correlation of absorption bands with standards. No. 2,017,611,789Google Scholar
  28. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin Elmer, Eden PrairieGoogle Scholar
  29. Naufal B, Periyat P (2016) High temperature stable dysprosium modified nano TiO2 photocatalyst. J Chem Pharm Sci Spec 1:68–74Google Scholar
  30. Obolenskaya LN, Kuzmicheva GM, Savinkina EV, Zhilkina AV, Sadovskaya NV, Prokudina NA, Chernyshev VV (2012) Influence of the conditions of the sulphate method on the characteristics of nanosized anatase-type samples. Russ Chem Bull 61:2049–1055.  https://doi.org/10.1007/s11172-012-0286-0 CrossRefGoogle Scholar
  31. Ohno T, Mitsui T, Matsumura M (2003) Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett 32:364–365.  https://doi.org/10.1246/cl.2003.364 CrossRefGoogle Scholar
  32. Pazourkova L, Simha Martynkova G, Hundakova M, Barosova H (2014) Montmorillonite and vermiculite modified by N-vinylcaprolactam and poly(N-Vinylcaprolactam) preparation and characterization. In: Paper presented at the “Nanocon-2014”, Brno, Czech Republic, 5–7 Nov 2014Google Scholar
  33. Polat O (2005) Polymerization and polymer characterization of N-vinylcaprolactam. Thesis for the degree of Master of ScienceGoogle Scholar
  34. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotechnol Biol Med 7:184–192.  https://doi.org/10.1016/j.nano.2010.10.001 CrossRefGoogle Scholar
  35. Qasim M, Udomluck N, Chang J, Park H, Kim K (2018) Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles. Int J Nanomed 13:235–249.  https://doi.org/10.2147/IJN.S153485 CrossRefGoogle Scholar
  36. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716.  https://doi.org/10.1016/j.actbio.2007.11.006 CrossRefGoogle Scholar
  37. Savinkina EV, Kuz’micheva GM, Tabachkova NY, Obolenskaya LN, Demina PA, Yakovenko AG (2011) Synthesis and morphology of anatase and η-TiO2 nanoparticles. Inorg Mater 47:489–494.  https://doi.org/10.1134/S0020168511050190 CrossRefGoogle Scholar
  38. Singh P, Srivastava A, Kumar R (2012) Synthesis of amphiphilic poly(N-vinylcaprolactam) using ATRP protocol and antibacterial study of its silver nanocomposite. J Polym Sci Part A Polym Chem 50:1503–1514.  https://doi.org/10.1002/pola.25911 CrossRefGoogle Scholar
  39. Sohn JR, Jang HJ, Park MY, Park EH, Park SE (1994) Physicochemical properties of TiO2–SiO2 unmodified and modified with H2SO4 and activity for acid catalysis. J Mol Catal 93:149–167.  https://doi.org/10.1016/0304-5102(94)00117-0 CrossRefGoogle Scholar
  40. Stengl V, Oplustil F, Nemec T (2012) In3+-doped TiO2 and TiO2/In2S3 nanocomposites for photocatalytic and stoichiometric degradations. Photochem Photobiol 88:265–276.  https://doi.org/10.1111/j.1751-1097.2011.01052.x CrossRefGoogle Scholar
  41. Suganys A, Shanmugavelayutham G, Rodriguez CS (2017) Study on plasma pre-functionalized PVC film grafted with TiO2/PVP to improve blood compatible and antibacterial properties. J Phys D Appl Phys 50:145402.  https://doi.org/10.1088/1361-6463/aa5f06 CrossRefGoogle Scholar
  42. Sun S, Wu P (2011) Infrared spectroscopic insight into hydration behavior of poly(N-vinylcaprolactam) in water. J Phys Chem B 115:11609–11618.  https://doi.org/10.1021/jp2071056 CrossRefGoogle Scholar
  43. Tarasevich BN (2012) IR spectra of the main classes of organic compounds. Nauka, RussiaGoogle Scholar
  44. Vasconcelos DCL, Costa VC, Nunes EHM, Sabioni ACS Gasparon M, Vasconcelos WL (2011) Infrared spectroscopy of titania sol–gel coatings on 316L stainless steel. Mater Sci Appl 2:1375–1382.  https://doi.org/10.4236/msa.2011.210186 CrossRefGoogle Scholar
  45. Vasilyeva I, Kuz’micheva G, Pochtar A, Gaynanova A, Timaeva O, Dorokhov A, Podbel’sky V (2016) On the nature of the phase “η-TiO2”. New J Chem 40:151–161.  https://doi.org/10.1039/C5NJ01870F CrossRefGoogle Scholar
  46. Wang LQ, Baer DR, Engelhard MH, Shultz AN (1995) The adsorption of liquid and vapor water on TiO2(110) surfaces: the role of defects. Surf Sci 344:237–250.  https://doi.org/10.1016/0039-6028(95)00859-4 CrossRefGoogle Scholar
  47. Wang X, Yu JC, Liu P, Wang X, Su W, Fu X (2006) Probing of photocatalytic surface sites on SO4 2–/TiO2 solid acids by in situ FT-IR spectroscopy and pyridine adsorption. J Photochem Photobiol A 179:339–347.  https://doi.org/10.1016/j.jphotochem.2005.09.007 CrossRefGoogle Scholar
  48. Wilson DJ, Rhodes NP, Williams RL (2003) Surface modification of a segmented polyether urethane using a low-powdered gas plasma and its influence on the activation of the coagulation system. Biomaterials 24:5069–5081.  https://doi.org/10.1016/S0142-9612(03)00423-X CrossRefGoogle Scholar
  49. Xu H, Kuo SW, Huang CF, Chang FC (2004) Characterization of poly(vinyl pyrrolidone-co-isobutylstyryl polyhedral oligomeric silsesquioxane) nanocomposites. J Appl Polym Sci 91:2208–2215.  https://doi.org/10.1002/app.13346 CrossRefGoogle Scholar
  50. Yamaguchi T (1990) Recent progress in solid superacid. Appl Catal 61:1–25.  https://doi.org/10.1016/S0166-9834(00)82131-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Federal State Budget Educational Institution of Higher Education “MIREA-Russian Technological University”MoscowRussia
  2. 2.Scientific Research Centre “Kurchatov Institute”MoscowRussia
  3. 3.Federal State Budget Enterprise “A.V. Vishnevsky Institute of Surgery” Ministry of Public Health of RussiaMoscowRussia

Personalised recommendations