Applied Nanoscience

, Volume 8, Issue 7, pp 1781–1790 | Cite as

Tracking the effect of binder length on colloidal stability and bioconjugation of gold nanoparticles

  • J. P. Oliveira
  • W. J. Keijok
  • A. R. Prado
  • M. C. C. GuimarãesEmail author
Original Article


Understanding the organization of self-assembled monolayers (SAMs) on gold nanoparticles (AuNPs) as protective coatings is a key role of biological applications of nanomaterials. Here, we report the influence on the stability of the surface coverage of three mercaptocarboxylic lingands onto AuNPs, mercaptopropanoic acid (MPA), mercaptoundecanoic acid (MUA) and mercaptopropionic acid (MHA) under different conditions. In addition, we optimized a bioconjugation route using bovine serum protein (BSA) as a protein model. AuNPs and successful binding of ligands and BSA on the AuNPs were analyzed by UV–Vis, TEM, FTIR, RAMAN, DLS and zeta potential. The size of as-synthesized AuNPs was 18 ± 1,2 nm with surface plasmon resonance (SPR) peak at 522 nm. The magnitude of the bathochromic shift of AuNPs with MPA, MUA and MHA was determined by UV–Vis and the SPR band position of AuNP shifts to 1.5, 3 and 5 nm longer. Moreover, the data show the influence of chain length on colloidal stability and covalent and non-covalent coupling steps with nanomaterials. We demonstrate a method for quantitative determination of the coatings on gold nanoparticles and open new perspectives in understanding the influence of monolayer thickness on the generation of nanobioconjugates for biological applications.


Gold nanoparticles Colloidal stability Thiol ligands Bioconjugation 



The authors acknowledge financial support from the Brazilian Ministry of Science and Technology (CNPq Grant 483036/2011-0), the Ministry of Science and Technology (MCTI/FINEP/CT-INFRA grant PROINFRA 01/2006) and the Foundation Support Research and Innovation of Espírito Santo (Grant 006/2014). This work used the equipment facilities at the Laboratory of Cellular Ultrastructure Carlos Alberto Redins and the Laboratory of Biomolecular Analysis (LABIOM) at the Federal University of Espírito Santo, with thanks for providing the equipment and technical support for experiments.

Author contributions

JPO conceived the project. JPO, ARP and WJK performed the characterizations and analysis. All authors contributed to discussions and writing of the manuscript. MCCG guided the research.

Supplementary material

13204_2018_843_MOESM1_ESM.pdf (308 kb)
Supplementary material 1 (PDF 308 KB)


  1. Arruebo M, Valladares M, Gonzalez-Fernandez A (2009) Antibody-conjugated nanoparticles for biomedical applications. J Nanomater. CrossRefGoogle Scholar
  2. Aslan K, Pérez-Luna VH (2002) Surface modification of colloidal gold by chemisorption of alkanethiols in the presence of a nonionic surfactant. Langmuir 18(16):6059–6065. CrossRefGoogle Scholar
  3. Bartczak D, Kanaras A (2011a) Preparation of peptide-functionalized gold nanoparticles using one pot EDC/Sulfo-NHS coupling. Langmuir 27:10119–10123CrossRefGoogle Scholar
  4. Bartczak D, Kanaras A (2011b) Preparation of peptide-functionalized gold nanoparticles using one pot EDC/sulfo-NHS coupling. Langmuir 27(16):10119–10123. CrossRefGoogle Scholar
  5. Briñas RP, Maetani M, Barchi JJ (2013) A survey of place-exchange reaction for the preparation of water-soluble gold nanoparticles. J Colloid Interface Sci 392:415–421. CrossRefGoogle Scholar
  6. El-Sayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37(5):326–333. CrossRefGoogle Scholar
  7. Feng AL, You ML, Tian L, Singamaneni S, Liu M, Duan Z, Lu TJ, Xu F, Lin M (2015) Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers. Sci Rep 5:1–10. CrossRefGoogle Scholar
  8. Gasiorek F, Pouokam E, Diener M, Schlecht S, Wickleder MS (2015) Effects of multivalent histamine supported on gold nanoparticles: activation of histamine receptors by derivatized histamine at subnanomolar concentrations. Org Biomol Chem 13(39):9984–9992. CrossRefGoogle Scholar
  9. Gole A, Murphy CJ (2008) Azide-derivatized gold nanorods: Functional materials for “Click” chemistry. Langmuir 24(1):266–272. CrossRefGoogle Scholar
  10. Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108(1):109–116. CrossRefGoogle Scholar
  11. Hermanson GT (1996) Bioconjugate techniques. Academic Press, New YorkGoogle Scholar
  12. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic Press, San DiegoGoogle Scholar
  13. Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2(1):18–29. CrossRefGoogle Scholar
  14. Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroudi H, Sedighimoghaddam B (2016) Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sensing Bio Sensing Res 9:17–22. CrossRefGoogle Scholar
  15. Kumar S, Aaron J, Sokolov K (2008) Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat Protoc 3:314–320. CrossRefGoogle Scholar
  16. Lacerda SHD, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, Douglas JF (2010) Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4(1):365–379. CrossRefGoogle Scholar
  17. Levy R, Wang ZX, Duchesne L, Doty RC, Cooper AI, Brust M, Fernig DG (2006) A generic approach to monofunctionalized protein-like gold nanoparticles based on immobilized metal ion affinity chromatography. Chembiochem 7(4):592–594. CrossRefGoogle Scholar
  18. Lévy R, Thanh NT, Doty RC, Hussain I, Nichols RJ, Schiffrin DJ, Brust M, Fernig DG (2004) Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J Am Chem Soc 126(32):10076–10084. CrossRefGoogle Scholar
  19. Li CH, Kuo TR, Su HJ, Lai WY, Yang PC, Chen JS, Wang DY, Wu YC, Chen CC (2015) Fluorescence-guided probes of aptamer-targeted gold nanoparticles with computed tomography imaging accesses forin vivo tumor resection. Sci Rep. CrossRefGoogle Scholar
  20. Lin S-Y, Tsai Y-T, Chen C-C, Lin C-M (2004) C.-H. Chen. Two-step functionalization of neutral and positively charged thiols onto citrate-stabilized Au nanoparticles. J Phys Chem B 108(7):2134–2139. CrossRefGoogle Scholar
  21. Lin Vien D, Colthup NB, Fateley WG, Graselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules, 1st edn. Academic Press, San DiegoGoogle Scholar
  22. Lynch I, Dawson KA Protein-nanoparticle interactions. Nano Today 2008, 3(1–2):40–47. CrossRefGoogle Scholar
  23. MacCuspie RI, Allen AJ, Hackley VA (2011) Dispersion stabilization of silver nanoparticles in synthetic lung fluid studied under in situ conditions. Nanotoxicology 5(2):140–156. CrossRefGoogle Scholar
  24. Mak JSW, Rutledge SA, Abu-Ghazalah RM, Eftekhari F, Irizar TNCM, Zheng G, Helmy AS (2013) Recent developments in optofluidic-assisted Raman spectroscopy. Prog Quantum Electron 37(1):1–50. CrossRefGoogle Scholar
  25. Mayya KS, Patil V, Sastry M (1997) On the stability of carboxylic acid derivatized gold colloidal particles: the role of colloidal solution pH studied by optical absorption spectroscopy. Langmuir 13(15):3944–3947. CrossRefGoogle Scholar
  26. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800. CrossRefGoogle Scholar
  27. Oliveira JP, Prado AR, Keijok WJ, Pontes MJ, Ribeiro MRN, Nogueira BV, Guimarães MCC (2017) Arab J Chem. CrossRefGoogle Scholar
  28. Pease LF, Tsai DH, Zangmeister RA, Zachariah MR, Tarlov MJ (2007) Quantifying the surface coverage of conjugate molecules on functionalized nanoparticles. J Phys Chem C 111(46):17155–17157. CrossRefGoogle Scholar
  29. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Bilan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechonol 4(10):669–673. CrossRefGoogle Scholar
  30. Prado AR, Oliveira JP, Pereira RH, Guimarães MC, Nogueira BV, Castro EV, Almeida LC, Ribeiro MR, Pontes MJ (2015) Surface-enhanced Raman plasmon in self-assembled sulfide-coated gold nanoparticle arrays. Plasmonics 10(5):1097–1103. CrossRefGoogle Scholar
  31. Roeges PG (1995) A guide to the complete interpretation of infrared spectra of organic structures. J Chem Educ 72(4):A93. CrossRefGoogle Scholar
  32. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779. CrossRefGoogle Scholar
  33. Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, Jacks T, Anderson DG (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12(1):39–50. CrossRefGoogle Scholar
  34. Silvia F, Sally P, David AR, Kim ES (2000) Self-assembled monolayers: a versatile tool for the formulation of the biosurfaces. Trends Anal Chem 19(9):530–540. CrossRefGoogle Scholar
  35. Socrates G (1994) Infrared characteristic group frequencies, 2nd edn. Wiley, New YorkGoogle Scholar
  36. Sperling RA, Rivera-Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–1908. CrossRefGoogle Scholar
  37. Stuart B (1997) Biological applications of infrared spectroscopy. ACOL Series, Wiley, ChichesterGoogle Scholar
  38. Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA (2011) Targeted photodynamic therapy of breast cancer cells using antibody–phthalocyanine–gold nanoparticle conjugates. Photochem Photobiol Sci 10(5):822–831. CrossRefGoogle Scholar
  39. Sukhanova A, Even-Desrumeaux K, Kisserli A, Tabary T, Reveil B, Millot JM, Chames P, Baty D, Artemyev M, Oleinikov V, Pluot M, Cohen JHM, Nabiev I (2012) Oriented conjugates of single-domain antibodies and quantum dots: toward new generation of ultra-small diagnostic nanoprobes. Nanomedicine 8(4):516–525. CrossRefGoogle Scholar
  40. Tandford C (1962) The interpretation of hydrogen ion titration curves of proteins. Adv Protein Chem 17:69–165. CrossRefGoogle Scholar
  41. Terentyuk GS, Maslyakova GN, Suleymanova LV, Khlebtsov NG, Khlebtsov BN, Akchurin GG, Maksimova IL, Tuchin VV (2009) Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. J Biomed Opt 14(2):1–9. CrossRefGoogle Scholar
  42. Thobhani S, Attree S, Boyd R, Kumarswami N, Noble J, Szymanski M, Porter RA (2010) Bioconjugation and characterisation of gold colloid-labelled proteins. J Immunol Methods 356(1–2):60–69. CrossRefGoogle Scholar
  43. Tsai DH, Zangmeister RA, Pease LF, Tarlov MJ, Zachariah MR (2008) Gas-phase ion-mobility characterization of SAM-functionalized Au nanoparticles. Langmuir 24(16):8483–8490. CrossRefGoogle Scholar
  44. Weisbecker CS, Merritt MV, Whitesides GM (1996) Molecular self-assembly of aliphatic thiols on gold colloids. Langmuir 12(16):3763–3772. CrossRefGoogle Scholar
  45. Wilson R, Chen Y, Aveyard J (2004) One molecule per particle method for functionalising nanoparticles. Chem Commun 10:1156–1157. CrossRefGoogle Scholar
  46. Zargar B, Hatamie A (2013) A simple and fast colorimetric method for detection of hydrazine in water samples based on formation of gold nanoparticles as a colorimetric probe. Sens Actuators B 182:706–710. CrossRefGoogle Scholar
  47. Zhou Y, Dong H, Liu L, Li M, Xiao K, Xu M (2014) Selective and sensitive colorimetric sensor of mercury (II) based on gold nanoparticles and 4-mercaptophenylboronic acid. Sens Actuators B 196:106–111. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. P. Oliveira
    • 1
  • W. J. Keijok
    • 1
  • A. R. Prado
    • 2
  • M. C. C. Guimarães
    • 1
    Email author
  1. 1.Federal University of Espirito SantoVitóriaBrazil
  2. 2.Federal Institute of Espírito SantoSerraBrazil

Personalised recommendations