Applied Nanoscience

, Volume 8, Issue 6, pp 1545–1555 | Cite as

Surface modification of oxygen-deficient ZnO nanotubes by interstitially incorporated carbon: a superior photocatalytic platform for sustainable water and surface treatments

  • Bhabhina Ninnora Meethal
  • Rajita Ramanarayanan
  • Sindhu SwaminathanEmail author
Original Article


An interesting architecture of robust, highly reproducible, template-free synthesis of phase pure carbon-incorporated short ZnO nanotubes through polymer assisted sol–gel method is presented here. These nanotubes exhibit enormous surface oxygen vacancies and mid bandgap levels confirmed by X-ray photoelectron spectroscopy. These carbon-modified nanotubes exhibit encouraging results in photocatalytic studies, as there is a 16% greater degradation of contaminant dye than in the pristine ZnO nanotube. The reactive oxygen species generated from the photocatalysts were experimentally confirmed and quantified. Super hydrophilic nature renders these nanotubes suitable for antifogging application as observed from contact angle measurements. Characterisation and mechanism of a competent material with improved photoresponse, promising greater energy efficiency and anti-fog have been described in this investigation.


Nanotubes Carbon Photocatalysis Super hydrophilic Antifogging 



The authors Bhabhina and Rajita acknowledge Council of Scientific and Industrial Research (CSIR) and University Grant Commission (UGC) for the financial assistance in the form of research and teacher fellowships. Author Sindhu acknowledges Council for Scientific and Industrial research (CSIR), Government of India for the financial support received in the form of research grant (no. 03(1285)/13/EMR-II). Authors are grateful to Dr. Sujith A and Suja P Sundaran of National Institute of Technology, Calicut, India, for their help in contact angle measurements.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Ansari SA, Cho MH (2016) Sci rep 6(1–10):25405CrossRefGoogle Scholar
  2. Ansari SA, Ansari SG, Foaud H, Cho MH (2017) NewJChem 41:9314–9320Google Scholar
  3. Atchudan R, Edison TNJI, Sugun S, Perumal N, Karthik D, Karthikeyan M, Shanmugam YR, Lee J (2018) Photochem Photobiol A 350:75–85CrossRefGoogle Scholar
  4. Aziz SNQAA, Pung S-Y, Ramli NN, Lockman Z (2014) Sci World J 252851:1–9CrossRefGoogle Scholar
  5. Bozetine H, Wang Q, Barras A, Li M, Hadjersi T, Szunerits S, Boukherroub R (2016) J Colloid Interface Sci 465:286–294CrossRefGoogle Scholar
  6. Chall S, Saha A, Biswas SK, Datta A, Bhattacharya SC (2012) J Mater Chem 22:12538–12546CrossRefGoogle Scholar
  7. Chen X, Liu L, Yu PY, Mao SS (2011) Science 331:746–750CrossRefGoogle Scholar
  8. Chevallier P, Turgeon S, S-Bournet C, Turcotte R, Laroche G (2011) ACS Appl Mater Interfaces 3:750–758CrossRefGoogle Scholar
  9. Danks AE, Hall SR, Schnepp Z (2016) Mater Horiz 3:91–112CrossRefGoogle Scholar
  10. Dave K, Park KH, Dhayal M (2015) RSC Adv 5:107348–107354CrossRefGoogle Scholar
  11. Du Y, Huang Z, Wu S, Xiong K, Zhang X, Zheng B, Nadimicherla R, Fu R, Wu D (2018) Polym 137:195–200CrossRefGoogle Scholar
  12. England MW, Urata C, Dunderdale GJ, Hozumi A (2016) ACS Appl Mater Interfaces 8:4318–4322CrossRefGoogle Scholar
  13. Gao Y, Gereige I, Labban AE, Cha D, Isimjan TT, Beaujuge PM (2014) ACS Appl Mater Interfaces 6:2219–2223CrossRefGoogle Scholar
  14. Gong Z, Karandikar S, Zhang X, Kotipalli V, Lvov Y, Que L, IEEE Sensors (2010) 29–32Google Scholar
  15. Guidelli EJ, Baffa O, Clarke DR (2015) Sci Rep 5:14004. (1–11).CrossRefGoogle Scholar
  16. Gunasekaran S, Sailatha E, Seshadri S, Kumaresan S (2009) Indian J Pure Appl Phys 47:12–18Google Scholar
  17. Hariharana R, Senthilkumara S, Suganthib A, Rajarajan M (2013) J Photochem Photobiol A 252:107–115CrossRefGoogle Scholar
  18. He D, Li Y, Wang I, Wu J, Yang Y, An Q (2017) Appl Surf Sci 391:318–325CrossRefGoogle Scholar
  19. Huang H, Li F, Wang H, Zheng X (2017) RSC Adv 7:50056–50063CrossRefGoogle Scholar
  20. Iaiche S, Djelloul A (2015) J Spectrosc 836859:1–9CrossRefGoogle Scholar
  21. Jothi Prakash CG, Clement Raj C, Prasanth R (2017) J Colloid Interface Sci 496:300–310CrossRefGoogle Scholar
  22. Kashyap J, Ashraf SM, Riaz U (2017) ACS Omega 2:8354–8365CrossRefGoogle Scholar
  23. Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P (2017) Science 355:1296–1299CrossRefGoogle Scholar
  24. Kumar R, Anandan S, Hembram K, Rao TN (2014) ACS Appl Mater Interfaces 6:13138CrossRefGoogle Scholar
  25. Kumar B, Kaur G, Rai SB (2017) Spectrochim acta part a: mol biol spectrosc 187:75–81CrossRefGoogle Scholar
  26. Lavand AB, Malghe YS, Int J Photochem 2015a (2014) (1–9)Google Scholar
  27. Lavand AB, Malghe YS (2015b) J Saudi Chem Soc 19:471–478CrossRefGoogle Scholar
  28. Lin X, Liang Y, Lu Z, Lou H, Zhang X, Liu S, Zheng B, Liu R, Fu R, Wu D (2017) ACS Sustainable Chem Eng 5:8535–8540CrossRefGoogle Scholar
  29. Liu X, Du H, Sun XW (2014) RSC Adv 4:5136–5140CrossRefGoogle Scholar
  30. Madhu R, Veeramani V, Chen S-M, Veerakumar P, Liu S-B, Miyamoto N (2016) Phys Chem Chem Phys 18:16466–16475CrossRefGoogle Scholar
  31. Mai W, Zuo Y, Li C, Wu J, Leng K, Zhang X, Liu R, Fu R, Wu D (2017) Polym Chem 8:4771CrossRefGoogle Scholar
  32. Meethal BN, pullanjiyot N, Swaminathan S (2017) Mater Des 130:426–432CrossRefGoogle Scholar
  33. Mello MLS, Vidal BC (2012) PLOS One 7(8):43169 (1–12)CrossRefGoogle Scholar
  34. Óvári L, Calderon SK, Lykhach Y, Libuda J, Erdohelyi A, Papp C, Kiss J, Steinrück H-P (2013) J Catal 307:132–139CrossRefGoogle Scholar
  35. Patrinoiu G, Calderon-Moreno JM, Birjega R, Culita DC, Somacescu S, Musuc AM, Spataru T, Carp O (2016) Phys Chem Chem Phys 18:30794–30807CrossRefGoogle Scholar
  36. Pouran HM, Llabjani V, Martin FL, Zhang H (2013) Environ Sci Technol 47:11115–11121CrossRefGoogle Scholar
  37. Roy BN, Singh GP, Godbole HM, Nehate SP (2009) Indian J Pharm Sci 71(4):395–405CrossRefGoogle Scholar
  38. Samadipakchin P, Mortaheb HR, Zolfaghari A (2017) J Photochem Photobiol A 337:91–99CrossRefGoogle Scholar
  39. Santara B, Giri PK, Imakita K, Fujii M (2014) J Phys D: Appl Phys 47:215302 (1–13)CrossRefGoogle Scholar
  40. Sharma V, Kumar P, Kumar A, Surbhi K, Asokan K, Sachdev (2017) Sol Energy Mater Sol Cells 169:122–131CrossRefGoogle Scholar
  41. Shen Z, Liang P, Wang S, Liu L, Liu S (2015) ACS Sustainable Chem Eng 3:1010—1016Google Scholar
  42. Sun H, He J, Wang J, Zhang S-Y, Liu C, Sritharan T, Mhaisalkar S, Han M-Y, Wang D, Chen H (2013) J Am Chem Soc 135:9099–9110CrossRefGoogle Scholar
  43. Titov VV, Lisachenko AA, Akopyan IK, Labzowskaya ME, Novikov BV (2018) J Lumin 195:153–158CrossRefGoogle Scholar
  44. Vetter M, Brodyanski A, Jodl H-J (2007) Fizika Nizkikh Tempe 33:1383–1392Google Scholar
  45. Wu L, Yang X, Li J, Huang Y, Li X (2017) Mater Chem Phys 202:136–142CrossRefGoogle Scholar
  46. Yan X, Gu Y, Zhang X, Huang Y, Qi J, Zhang Y, Fujita T, Chen M (2009) J Phys Chem C 113(4):1164–1167CrossRefGoogle Scholar
  47. Yang H, Ye Q, Zeng R, Zhang J, Yue L, Xu M (2017) Sensors 17:2415 (1–11)CrossRefGoogle Scholar
  48. Zhang X, Qin J, Xue Y, Yu P, Zhang B, Wang L, Liu R (2014) Sci rep 4:4596 (1–8)CrossRefGoogle Scholar
  49. Zhang X, Qin J, Hao R, Wang L, Shen X, Yu R, Limpanart S, Ma M, Liu R (2015) J Phys Chem C 119:20544–20554CrossRefGoogle Scholar
  50. Zhang Q, Wang H, Li Z, Geng C, Leng J (2017) ACS Appl Mater Interfaces 9:21738–21746CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nanoscience and TechnologyUniversity of CalicutKeralaIndia

Personalised recommendations