Advertisement

Symbiosis

, Volume 79, Issue 1, pp 25–31 | Cite as

Comparative study of secondary metabolites and bioactive properties of the lichen Cladonia foliacea with and without the lichenicolous fungus Heterocephalacria bachmannii

  • Ayda Khadhri
  • Mohammed Mendili
  • Maria Eduarda M. Araújo
  • Mark R. D. SeawardEmail author
Article
  • 78 Downloads

Abstract

The phenolic, flavonoid, tannin and proanthocyanidin content of the lichen Cladonia foliacea with and without its lichenicolous fungus Heterocephalacria (Syzygospora) bachmannii was investigated. The phenolic compounds were quantified in organic extracts using ultrasonic extraction (acetone and methanol) and in milled material (the ground material diluted with microcrystalline cellulose). The total phenolic content depended on the solvent polarity, the extraction technique and the species. The results demonstrated that the highest total phenolic content was recorded in untreated milled material (935.75 μg GAE/g DW) of H. bachmannii plus C. foliacea, followed by C. foliacea (668.29 μg GAE/g DW). The antioxidant activities were evaluated by the in vitro scavenging capacity, iron reducing power, and iron chelating power. The results showed that the highest scavenging capacity were obtained in methanol extracts of C. foliacea with IC50 = 0.015 mg/mL, followed by methanolic extract of H. bachmannii plus C. foliacea that had a scavenging capacity and iron reducing power of (IC50 = 0.030 mg/mL and IC50 = 0.054 mg/mL, respectively). The milled material showed the highest iron chelating power (IC50 = 0.279 mg/mL). We conclude that Cladonia foliacea when parasitized by H. bachmannii possesses a high antioxidant potential in the methanolic extract. Acetone and methanol extracts, showed that extracts from lichen plus lichenicolous fungus contained different and possibly more effective bioactive molecules than the lichen alone. These included phenolic acids, alkanes and aromatic compounds. This is the first study to investigate the phenolic content and antioxidant capacity of a lichenicolous fungus, albeit based on differences between the lichen with and without the mycoparasite H. bachmannii .

Keywords

Antioxidant capacity FTIR 1H NMR Phenolic compounds QUENCHER approach Secondary metabolites Syzygospora bachmannii Tunisia 

Notes

References

  1. Ahti T (2000) Cladoniaceae. Flora Neotropica Monogr 78:1–363Google Scholar
  2. Ahti T, Stenroos S (2013) Cladoniaceae. In: Ahti T, Stenroos S, Moberg R (eds) Nordic Lichen Flora, vol 5. Museum of Evolution, Uppsala University, UppsalaGoogle Scholar
  3. Anar M, Orhan F, Alpsoy L, Gulluce M, Aslan A, Agar G (2013) The antioxidant and antigenotoxic potential of methanol extract of Cladonia foliacea (Huds.) Willd. Toxicol Ind Health 32:721–729CrossRefGoogle Scholar
  4. Chemat F, Huma Z, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18:813–835CrossRefGoogle Scholar
  5. Decker EA, Welch B (1990) Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 38:674–677CrossRefGoogle Scholar
  6. Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014CrossRefGoogle Scholar
  7. Diederich P (1996) The lichenicolous heterobasidiomycetes. Bibliotheca Lichenologica 61:1–198Google Scholar
  8. Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N (2006) Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem 97:654–660CrossRefGoogle Scholar
  9. Ginns J (1986) The genus Syzygospora (Heterobasidiomycetes: Syzygosporaceae). Mycologia 78:619–636CrossRefGoogle Scholar
  10. Gökmen V, Serpen A, Fogliano V (2009) Direct measurement of the total antioxidant capacity of foods: the ‘QUENCHER’ approach. Food Sci Technol 20:278–288CrossRefGoogle Scholar
  11. Gulcin I, Kurfrevioglu OI, Oktay M, Buyukokuroglu ME (2004) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 90:205–215CrossRefGoogle Scholar
  12. Hanato T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licore root: their relative astringency and radical scavenging affects. Chem Pharm Bull 36:2090–2097CrossRefGoogle Scholar
  13. Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570CrossRefGoogle Scholar
  14. Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer Verlag, BerlinCrossRefGoogle Scholar
  15. Kellogg J, Raja HA (2017) Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phytochem Rev 16:271–293CrossRefGoogle Scholar
  16. Kosanić M, Ranković B, Sukdolak S (2010) Antimicrobial activity of the lichens Lecanora frustulosa and Parmeliopsis hyperopta and their divaricatic acid and zeorin constituents. Afr J Microbiol Res 4:885–890Google Scholar
  17. Kosanić M, Ranković B, Stanojković T (2012) Antioxidant, antimicrobial, and anticancer activities of three Parmelia species. J Sci Food Agric 92:1909–1916CrossRefGoogle Scholar
  18. Lawrey JD (1993) Chemical ecology of Hobsonia christiansenii, a lichenicolous hyphomycete. Am J Bot 80:1109–1113CrossRefGoogle Scholar
  19. Lawrey JD (1999) Chemical interactions between two lichen-degrading fungi. J Chem Ecol 26:1821–1831CrossRefGoogle Scholar
  20. Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147CrossRefGoogle Scholar
  21. Maksimovic Z, Malencic D, Kovacevic N (2005) Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresour Technol 96:873–877CrossRefGoogle Scholar
  22. Merinero S, Bidussi M, Gauslaa Y (2015) Do lichen secondary compounds play a role in highly specific fungal parasitism? Fungal Ecol 14:125–129CrossRefGoogle Scholar
  23. Odabasoglu F, Cakir A, Suleyman H (2006) Gastroprotective and antioxidant effects of usnic acid on indomethacine-induced gastric ulcer in rats. J Ethnopharmacol 103(1):59–65CrossRefGoogle Scholar
  24. Oyaizu M (1986) Studies on products of browning reaction-antioxidative activities of products of Browning reaction prepared from glucosamine. Jpn J Nutr 44:307–315CrossRefGoogle Scholar
  25. Padhi S, Tayung K (2015) In vitro antimicrobial potentials of endolichenic fungi isolated from thalli of Parmelia lichen against some human pathogens. Beni-Suef Univ J Basic Appl Sci 4:299–306CrossRefGoogle Scholar
  26. Patlevič P, Vašková J, Švorc P, Vaško L, Švorc P (2016) Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integrative Med Res 5:250–258CrossRefGoogle Scholar
  27. Pèrez-Jimènez J, Saura-Calixto F (2005) Literature data may underestimate the actual antioxidant capacity of cereals. J Agric Food Chem 53:5036–5040CrossRefGoogle Scholar
  28. Pino-Bodas R, Laakso I, Stenroos S (2017) Genetic variation and factors affecting the genetic structure of the lichenicolous fungus Heterocephalacria bachmannii (Filobasidiales, Basidiomycota). PLoS One 12(12):1–22CrossRefGoogle Scholar
  29. Pino-Bodas R, Burgaz AR, Ahti T, Stenroos S (2018) Taxonomy of Cladonia angustiloba and related species. Lichenologist 50:267–282CrossRefGoogle Scholar
  30. Ranković BR, Kosanić MM, Stanojković TP (2011) Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. Complement Altern Med 11:1–8CrossRefGoogle Scholar
  31. Sun B, Ricardo-da-Silva JM, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46:4267–4274CrossRefGoogle Scholar
  32. Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312CrossRefGoogle Scholar
  33. Zhurbenko M, Pino-Bodas R (2017) Lichenicolous fungi growing on Cladonia, mainly from the northern hemisphere, with a worldwide key to the known species. Opuscula Philolichenum 16:188–266Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Ayda Khadhri
    • 1
  • Mohammed Mendili
    • 1
  • Maria Eduarda M. Araújo
    • 2
  • Mark R. D. Seaward
    • 3
    Email author
  1. 1.Faculty of Sciences, Unit of Research of Plant EcologyUniversity of Tunis El-Manar IITunisTunisia
  2. 2.Faculty of Sciences, Centre of Chemistry and BiochemistryUniversity of LisbonLisbonPortugal
  3. 3.School of Archaeological & Forensic SciencesUniversity of BradfordBradfordUK

Personalised recommendations